4 research outputs found

    Fundamental physics in space with the Fermi Gamma-ray Space Telescope

    Full text link
    Successfully launched in June 2008, the Fermi Gamma-ray Space Telescope, formerly named GLAST, has been observing the high-energy gamma-ray sky with unprecedented sensitivity for more than two years, opening a new window on a wide variety of exotic astrophysical objects. This paper is a short overview of the main science highlights, aimed at non-specialists, with emphasis on those which are more directly connected with the study of fundamental physics---particularly the search for signals of new physics in the diffuse gamma-ray emission and in the cosmic radiation and the study of Gamma-Ray Burst as laboratories for testing possible violations of the Lorentz invariance.Comment: 12 pages, 7 figures, submitted for the proceedings of DICE 201

    Non-Baryonic Dark Matter - Observational Evidence and Detection Methods

    Get PDF
    The evidence for the existence of dark matter in the universe is reviewed. A general picture emerges, where both baryonic and non-baryonic dark matter is needed to explain current observations. In particular, a wealth of observational information points to the existence of a non-baryonic component, contributing between around 20 and 40 percent of the critical mass density needed to make the universe geometrically flat on large scales. In addition, an even larger contribution from vacuum energy (or cosmological constant) is indicated by recent observations. To the theoretically favoured particle candidates for non-baryonic dark matter belong axions, supersymmetric particles, and of less importance, massive neutrinos. The theoretical foundation and experimental situation for each of these is reviewed. Direct and indirect methods for detection of supersymmetric dark matter are described in some detail. Present experiments are just reaching the required sensitivity to discover or rule out some of these candidates, and major improvements are planned over the coming years.Comment: Submitted to Reports on Progress in Physics, 59 pages, LaTeX, iopart macro, 14 embedded postscript figure

    Positrons and antiprotons from inert doublet model dark matter

    Full text link
    In the framework of the Inert Doublet Model, a very simple extension of the Standard Model, we study the production and propagation of antimatter in cosmic rays coming from annihilation of a scalar dark matter particle. We consider three benchmark candidates, all consistent with the WMAP cosmic abundance and existing direct detection experiments, and confront the predictions of the model with the recent PAMELA, ATIC and HESS data. For a light candidate, M_{DM} = 10 GeV, we argue that the positron and anti-proton fluxes may be large, but still consistent with expected backgrounds, unless there is an enhancement (boost factor) in the local density of dark matter. There is also a substantial anti-deuteron flux which might be observable by future experiments. For a candidate with M_{DM} = 70 GeV, the contribution to positron and anti-proton fluxes is much smaller than the expected backgrounds. Even if a boost factor is invoked to enhance the signals, the candidate is unable to explain the observed positron and anti-proton excesses. Finally, for a heavy candidate, M_{DM} = 10 TeV, it is possible to fit the PAMELA excess (but, unfortunately, not the ATIC one) provided there is a large enhancement, either in the local density of dark matter or through the Sommerfeld effect.Comment: 17 pages ; v2: matches JCAP published versio

    Cosmic Rays from Leptophilic Dark Matter Decay via Kinetic Mixing.

    No full text
    If interpreted in terms of decaying dark matter, the steep rise in the positron fraction of cosmic rays above 10 GeV, as observed by the PAMELA experiment, suggests an underlying production mechanism that favors leptonic channels. We consider a scenario where a portion of the dark matter is made of the gauginos of an unbroken hidden-sector U(1), which interact with the visible sector only through a tiny kinetic mixing. The second component of the dark matter is made of neutralinos, and depending on the mass spectrum, the lightest neutralino or the hidden gaugino becomes unstable and subject to decay. We analyze the cosmic rays, namely the contributions to the positron, the extragalactic gamma-ray and the antiproton flux, which potentially result from these decays and demonstrate that the production of antiprotons can be naturally suppressed. Furthermore, we briefly discuss the apparent double-peak structure of the ATIC data in light of cascade-decaying hidden gauginos, as well as possible signatures at Fermi.Comment: 29 pages, 5 figure
    corecore