192 research outputs found

    Collisions of cold magnesium atoms in a weak laser field

    Full text link
    We use quantum scattering methods to calculate the light-induced collisional loss of laser-cooled and trapped magnesium atoms for detunings up to 30 atomic linewidths to the red of the 1S_0-1P_1 cooling transition. Magnesium has no hyperfine structure to complicate the theoretical studies. We evaluate both the radiative and nonradiative mechanisms of trap loss. The radiative escape mechanism via allowed 1Sigma_u excitation is dominant for more than about one atomic linewidth detuning. Molecular vibrational structure due to photoassociative transitions to bound states begins to appear beyond about ten linewidths detuning.Comment: 4 pages with 3 embedded figure

    Quantum degeneracy and interaction effects in spin-polarized Fermi-Bose mixtures

    Full text link
    Various features of spin-polarized Fermi gases confined in harmonic traps are discussed, taking into account possible perspectives of experimental measurements. The mechanism of the expansion of the gas is explicitly investigated and compared with the one of an interacting Bose gas. The role of interactions on the equilibrium and non equilibrium behaviour of the fermionic component in Fermi-Bose mixtures is discussed. Special emphasis is given to the case of potassium isotopes mixtures.Comment: 5 pages, 3 figures, revtex, to be published in J. Phys.

    Static Properties of Trapped Bose-Fermi Mixed Condensate of Alkali Atoms

    Full text link
    Static properties of a bose-fermi mixture of trapped potassium atoms are studied in terms of coupled Gross-Pitaevskii and Thomas-Fermi equations for both repulsive and attractive bose-fermi interatomic potentials. Qualitative estimates are given for solutions of the coupled equations, and the parameter regions are obtained analytically for the boson-density profile change and for the boson/fermion phase separation. Especially, the parameter ratio RintR_{int} is found that discriminates the region of the large boson-profile change. These estimates are applied for numerical results for the potassium atoms and checked their consistency. It is suggested that a small fraction of fermions could be trapped without an external potential for the system with an attractive boson-fermion interaction.Comment: 8 pages,5 figure

    Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances

    Full text link
    The properties of Bose-Einstein condensed gases can be strongly altered by tuning the external magnetic field near a Feshbach resonance. Feshbach resonances affect elastic collisions and lead to the observed modification of the scattering length. However, as we report here, this is accompanied by a strong increase in the rate of inelastic collisions. The observed three-body loss rate in a sodium Bose-Einstein condensation increased when the scattering length was tuned to both larger or smaller values than the off-resonant value. This observation and the maximum measured increase of the loss rate by several orders of magnitude are not accounted for by theoretical treatments. The strong losses impose severe limitations for using Feshbach resonances to tune the properties of Bose-Einstein condensates. A new Feshbach resonance in sodium at 1195 G was observed.Comment: 4 pages, 3 figure

    Inter-isotope determination of ultracold rubidium interactions from three high-precision experiments

    Get PDF
    Combining the measured binding energies of four of the most weakly bound rovibrational levels of the 87^{87}Rb2_2 molecule with the results of two other recent high-precision rubidium experiments, we obtain exceptionally strong constraints on the atomic interaction parameters in a highly model independent analysis. The comparison of 85^{85}Rb and 87^{87}Rb data, where the two isotopes are related by a mass scaling procedure, plays a crucial role. Using the consistent picture of the interactions that thus arises we are led to predictions for scattering lengths, clock shifts, Feshbach resonance fields and widths with an unprecedented level of accuracy. To demonstrate this, we predict two Feshbach resonances in mixed-spin scattering channels at easily accessible magnetic field strengths, which we expect to play a role in the damping of coherent spin oscillations

    Creating massive entanglement of Bose condensed atoms

    Full text link
    We propose a direct, coherent coupling scheme that can create massively entangled states of Bose-Einstein condensed atoms. Our idea is based on an effective interaction between two atoms from coherent Raman processes through a (two atom) molecular intermediate state. We compare our scheme with other recent proposals for generation of massive entanglement of Bose condensed atoms.Comment: 5 pages, 3 figures; Updated figure 3(a), original was "noisy

    A white-light trap for Bose-Einstein condensates

    Full text link
    We propose a novel method for trapping Bose-condensed atoms using a white-light interference fringe. Confinement frequencies of tens of kHz can be achieved in conjunction with trap depths of only a few micro-K. We estimate that lifetimes on the order of 10 s can be achieved for small numbers of atoms. The tight confinement and shallow depth permit tunneling processes to be used for studying interaction effects and for applications in quantum information.Comment: 10 pages with 3 figure

    The density dependence of the transition temperature in a homogenous Bose flui

    Full text link
    Transition temperature data obtained as a function of particle density in the 4^4He-Vycor system are compared with recent theoretical calculations for 3D Bose condensed systems. In the low density dilute Bose gas regime we find, in agreement with theory, a positive shift in the transition temperature of the form ΔT/T0=γ(na3)1/3\Delta T/T_0 = \gamma(na^{3})^{1/3}. At higher densities a maximum is found in the ratio of Tc/T0T_c /T_0 for a value of the interaction parameter, na3^3, that is in agreement with path-integral Monte Carlo calculations.Comment: 4 pages, 3 figure

    Observation of p-wave Threshold Law Using Evaporatively Cooled Fermionic Atoms

    Full text link
    We have measured independently both s-wave and p-wave cross-dimensional thermalization rates for ultracold potassium-40 atoms held in a magnetic trap. These measurements reveal that this fermionic isotope has a large positive s-wave triplet scattering length in addition to a low temperature p-wave shape resonance. We have observed directly the p-wave threshold law which, combined with the Fermi statistics, dramatically suppresses elastic collision rates at low temperatures. In addition, we present initial evaporative cooling results that make possible these collision measurements and are a precursor to achieving quantum degeneracy in this neutral, low-density Fermi system.Comment: 5 pages, 3 figures, 1 tabl
    corecore