9 research outputs found

    IDegLira Improves Both Fasting and Postprandial Glucose Control as Demonstrated Using Continuous Glucose Monitoring and a Standardized Meal Test

    Get PDF
    Objective: IDegLira is a novel, fixed-ratio combination of the long-acting basal insulin, insulin degludec, and the long-acting glucagon-like peptide-1 analog liraglutide. We studied the effect of IDegLira versus its components on postprandial glucose (PPG) in type 2 diabetes. Methods: In this substudy, 260 (15.6%) of the original 1663 patients with inadequate glycemic control participating in a 26-week, open-label trial (DUAL I) were randomized 2:1:1 to once-daily IDegLira, insulin degludec or liraglutide. Continuous glucose monitoring (CGM) for 72 hours and a meal test were performed. Results: At week 26, IDegLira produced a significantly greater decrease from baseline in mean PPG increment (normalized iAUC0-4h) than insulin degludec (estimated treatment difference [ETD] -'12.79 mg/dl [95% CI: -'21.08; -'4.68], P =.0023) and a similar magnitude of decrease as liraglutide (ETD -'1.62 mg/dl [95% CI: -'10.09; 6.67], P =.70). CGM indicated a greater reduction in change from baseline in PPG increment (iAUC0-4h) for IDegLira versus insulin degludec over all 3 main meals (ETD -'6.13 mg/dl [95% CI: -'10.27, -'1.98], P =.0047) and similar reductions versus liraglutide (ETD -'1.80 mg/dl [95% CI: -'2.52, 5.95], P =.4122). Insulin secretion ratio and static index were greater for IDegLira versus insulin degludec (P =.048 and P =.006, respectively) and similar to liraglutide (P =.45 and P =.895, respectively). Conclusions: Once-daily IDegLira provides significantly better PPG control following a mixed meal test than insulin degludec. The improvement is at least partially explained by higher endogenous insulin secretion and improved beta cell function with IDegLira. The benefits of liraglutide on PPG control are maintained across all main meals in the combination

    Primordial Nucleosynthesis for the New Cosmology: Determining Uncertainties and Examining Concordance

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) have a long history together in the standard cosmology. The general concordance between the predicted and observed light element abundances provides a direct probe of the universal baryon density. Recent CMB anisotropy measurements, particularly the observations performed by the WMAP satellite, examine this concordance by independently measuring the cosmic baryon density. Key to this test of concordance is a quantitative understanding of the uncertainties in the BBN light element abundance predictions. These uncertainties are dominated by systematic errors in nuclear cross sections. We critically analyze the cross section data, producing representations that describe this data and its uncertainties, taking into account the correlations among data, and explicitly treating the systematic errors between data sets. Using these updated nuclear inputs, we compute the new BBN abundance predictions, and quantitatively examine their concordance with observations. Depending on what deuterium observations are adopted, one gets the following constraints on the baryon density: OmegaBh^2=0.0229\pm0.0013 or OmegaBh^2 = 0.0216^{+0.0020}_{-0.0021} at 68% confidence, fixing N_{\nu,eff}=3.0. Concerns over systematics in helium and lithium observations limit the confidence constraints based on this data provide. With new nuclear cross section data, light element abundance observations and the ever increasing resolution of the CMB anisotropy, tighter constraints can be placed on nuclear and particle astrophysics. ABRIDGEDComment: 54 pages, 20 figures, 5 tables v2: reflects PRD version minor changes to text and reference

    Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study.

    No full text
    AIMS/HYPOTHESIS: We examined the phenotype of individuals with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) with regard to insulin release and insulin resistance. METHODS: Non-diabetic offspring (n=874; mean age 40+/-10.4 years; BMI 26.6+/-4.9 kg/m(2)) of type 2 diabetic patients from five different European Centres (Denmark, Finland, Germany, Italy and Sweden) were examined with regard to insulin sensitivity (euglycaemic clamps), insulin release (IVGTT) and glucose tolerance (OGTT). The levels of glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) were measured during the OGTT in 278 individuals. RESULTS: Normal glucose tolerance was found in 634 participants, while 110 had isolated IFG, 86 had isolated IGT and 44 had both IFG and IGT, i.e. about 28% had a form of reduced glucose tolerance. Participants with isolated IFG had lower glucose-corrected first-phase (0-10 min) and higher second-phase insulin release (10-60 min) during the IVGTT, while insulin sensitivity was reduced in all groups with abnormal glucose tolerance. Similarly, GLP-1 but not GIP levels were reduced in individuals with abnormal glucose tolerance. CONCLUSIONS/INTERPRETATION: The primary mechanism leading to hyperglycaemia in participants with isolated IFG is likely to be impaired basal and first-phase insulin secretion, whereas in isolated IGT the primary mechanism leading to postglucose load hyperglycaemia is insulin resistance. Reduced GLP-1 levels were seen in all groups with abnormal glucose tolerance and were unrelated to the insulin release pattern during an IVGTT

    Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity.

    No full text
    Patients with established type 2 diabetes display both beta-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci and indices of proinsulin processing, insulin secretion and insulin sensitivity. We included data from up to 58,614 non-diabetic subjects with basal measures, and 17,327 with dynamic measures. We employed additive genetic models with adjustment for sex, age and BMI, followed by fixed-effects inverse variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (including TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without detectable change in fasting glucose. The final group contained twenty risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition

    Mitochondrial and metabolic-based protective strategies in Huntington’s disease: the case of creatine and coenzyme Q

    No full text
    corecore