3 research outputs found

    Influence of filter age on Fe, Mn and NH4+ removal in dual media rapid sand filters used for drinking water production

    Get PDF
    Rapid sand filtration is a common method for removal of iron (Fe), manganese (Mn) and ammonium (NH4+) from anoxic groundwaters used for drinking water production. In this study, we combine geochemical and microbiological data to assess how filter age influences Fe, Mn and NH4+ removal in dual media filters, consisting of anthracite overlying quartz sand, that have been in operation for between ∼2 months and ∼11 years. We show that the depth where dissolved Fe and Mn removal occurs is reflected in the filter medium coatings, with ferrihydrite forming in the anthracite in the top of the filters ( 1 m). Removal of NH4+ occurs through nitrification in both the anthracite and sand and is the key driver of oxygen loss. Removal of Fe is independent of filter age and is always efficient (> 97% removal). In contrast, for Mn, the removal efficiency varies with filter age, ranging from 9 to 28% at ∼2–3 months after filter replacement to 100% after 8 months. After 11 years, removal reduces to 60–80%. The lack of Mn removal in the youngest filters (at 2–3 months) is likely the result of a relatively low abundance of mineral coatings that adsorb Mn2+ and provide surfaces for the establishment of a microbial community. 16S rRNA gene amplicon sequencing shows that Gallionella, which are known Fe2+ oxidizers, are present after 2 months, yet Fe2+ removal is mostly chemical. Efficient NH4+ removal (> 90%) establishes within 3 months of operation but leakage occurs upon high NH4+loading (> 160 µM). Two-step nitrification by Nitrosomonas and Candidatus Nitrotoga is likely the most important NH4+ removal mechanism in younger filters during ripening (2 months), after which complete ammonia oxidation by Nitrospira and canonical two-step nitrification occur simultaneously in older filters. Our results highlight the strong effect of filter age on especially Mn2+but also NH4+ removal. We show that ageing of filter medium leads to the development of thick coatings, which we hypothesize leads to preferential flow, and breakthrough of Mn2+. Use of age-specific flow rates may increase the contact time with the filter medium in older filters and improve Mn2+ and NH4+ removal

    Blastopirellula retiformator sp. nov. isolated from the shallow-sea hydrothermal vent system close to Panarea Island.

    No full text
    Aquatic bacteria belonging to the deep-branching phylum Planctomycetes play a major role in global carbon and nitrogen cycles. However, their uncommon morphology and physiology, and their roles and survival on biotic surfaces in marine environments, are only partially understood. Access to axenic cultures of different planctomycetal genera is key to study their complex lifestyles, uncommon cell biology and primary and secondary metabolism in more detail. Here, we describe the characterisation of strain Enr8T isolated from a marine biotic surface in the seawater close to the shallow-sea hydrothermal vent system off Panarea Island, an area with high temperature and pH gradients, and high availability of different sulphur and nitrogen sources resulting in a great microbial diversity. Strain Enr8T showed typical planctomycetal traits such as division by polar budding, aggregate formation and presence of fimbriae and crateriform structures. Growth was observed at ranges of 15-33 °C (optimum 30 °C), pH 6.0-8.0 (optimum 7.0) and at NaCl concentrations from 100 to 1200 mM (optimum 350-700 mM). Strain Enr8T forms white colonies on solid medium and white flakes in liquid culture. Its genome has a size of 6.20 Mb and a G + C content of 59.2%. Phylogenetically, the strain belongs to the genus Blastopirellula. We propose the name Blastopirellula retiformator sp. nov. for the novel species, represented by the type strain Enr8T (DSM 100415T = LMG 29081T)

    Alienimonas californiensis gen. nov. sp. nov., a novel Planctomycete isolated from the kelp forest in Monterey Bay.

    No full text
    Planctomycetes are environmentally and biotechnologically important bacteria and are often found in association with nutrient-rich (marine) surfaces. To allow a more comprehensive understanding of planctomycetal lifestyle and physiology we aimed at expanding the collection of axenic cultures with new isolates. Here, we describe the isolation and genomic and physiological characterisation of strain CA12T obtained from giant bladder kelp (Macrocystis pyrifera) in Monterey Bay, California, USA. 16S rRNA gene sequence and whole genome-based phylogenetic analysis showed that strain CA12T clusters within the family Planctomycetaceae and that it has a high 16S rRNA sequence similarity (82.3%) to Planctomicrobium piriforme DSM 26348T. The genome of strain CA12T has a length of 5,475,215 bp and a G+C content of 70.1%. The highest growth rates were observed at 27 °C and pH 7.5. Using different microscopic methods, we could show that CA12T is able to divide by consecutive polar budding, without completing a characteristic planctomycetal lifestyle switch. Based on our data, we suggest that the isolated strain represents a novel species within a novel genus. We thus propose the name Alienimonas gen. nov. with Alienimonas californiensis sp. nov. as type species of the novel genus and CA12T as type strain of the novel species
    corecore