524 research outputs found
The contemporary pulmonary artery catheter. Part 2:measurements, limitations, and clinical applications
Nowadays, the classical pulmonary artery catheter (PAC) has an almost 50-year-old history of its clinical use for hemodynamic monitoring. In recent years, the PAC evolved from a device that enabled intermittent cardiac output measurements in combination with static pressures to a monitoring tool that provides continuous data on cardiac output, oxygen supply and-demand balance, as well as right ventricular performance. In this review, which consists of two parts, we will introduce the difference between intermittent pulmonary artery thermodilution using bolus injections, and the contemporary PAC enabling continuous measurements by using a thermal filament which heats up the blood. In this second part, we will discuss in detail the measurements of the contemporary PAC, including continuous cardiac output measurement, right ventricular ejection fraction, end-diastolic volume index, and mixed venous oxygen saturation. Limitations of all of these measurements are highlighted as well. We conclude that thorough understanding of measurements obtained from the PAC is the first step in successful application of the PAC in daily clinical practice
The contemporary pulmonary artery catheter. Part 1:placement and waveform analysis
Nowadays, the classical pulmonary artery catheter (PAC) has an almost 50-year-old history of its clinical use for hemodynamic monitoring. In recent years, the PAC evolved from a device that enabled intermittent cardiac output measurements in combination with static pressures to a monitoring tool that provides continuous data on cardiac output, oxygen supply and-demand balance, as well as right ventricular (RV) performance. In this review, which consists of two parts, we will introduce the difference between intermittent pulmonary artery thermodilution using cold bolus injections, and the contemporary PAC enabling continuous measurements by using a thermal filament which at random heats up the blood. In this first part, the insertion techniques, interpretation of waveforms of the PAC, the interaction of waveforms with the respiratory cycle and airway pressure as well as pitfalls in waveform analysis are discussed. The second part will cover the measurements of the contemporary PAC including measurement of continuous cardiac output, RV ejection fraction, end-diastolic volume index, and mixed venous oxygen saturation. Limitations of all of these measurements will be highlighted there as well. We conclude that thorough understanding of measurements obtained from the PAC are the first step in successful application of the PAC in daily clinical practice
The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands
Background Low mixed or central venous saturation (S(c)vO(2)) can reveal global tissue hypoxia and therefore can predict poor prognosis in critically ill patients. Early goal directed therapy (EGDT), aiming at an ScvO(2) >= 70%, has been shown to be a valuable strategy in patients with sepsis or septic shock and is incorporated in the Surviving Sepsis Campaign guidelines. Methods In this prospective observational multi-center study, we determined central venous pressure (CVP), hematocrit, pH, lactate and ScvO(2) or SvO(2) in a heterogeneous group of critically ill patients early after admission to the intensive care units (ICUs) in three Dutch hospitals. Results Data of 340 acutely admitted critically ill patients were collected. The mean SvO(2) value was > 65% and the mean ScvO(2) value was > 70%. With mean CVP of 10.3 +/- 5.5 mmHg, lactate plasma levels of 3.6 +/- 3.6 and acute physiology, age and chronic health evaluation (APACHE II) scores of 21.5 +/- 8.3, the in-hospital mortality of the total heterogeneous population was 32.0%. A subgroup of septic patients (n = 125) showed a CVP of 9.8 +/- 5.4 mmHg, mean ScvO(2) values of 74.0 +/- 10.2%, where only 1% in this subgroup revealed a ScvO(2) value <50%, and lactate plasma levels of 2.7 +/- 2.2 mmol/l with APACHE II scores 20.9 +/- 7.3. Hospital mortality of this subgroup was 26%. Conclusion The incidence of low ScvO(2) values for acutely admitted critically ill patients is low in Dutch ICUs. This is especially true for patients with sepsis/septic shock
Non-invasive assessment of fluid responsiveness to guide fluid therapy in patients with sepsis in the emergency department:a prospective cohort study
BACKGROUND: Little is known about optimal fluid therapy for patients with sepsis without shock who present to the ED. In this study, we aimed to quantify the effect of a fluid challenge on non-invasively measured Cardiac Index (CI) in patients presenting with sepsis without shock. METHODS: In a prospective cohort study, CI, stroke volume (SV) and systemic vascular resistance (SVR) were measured non-invasively in 30 patients presenting with sepsis without shock to the ED of a large teaching hospital in the Netherlands between May 2018 and March 2019 using the ClearSight system. After baseline measurements were performed, a passive leg raise (PLR) was done to simulate a fluid bolus. Measurements were then repeated 30, 60, 90 and 120 s after PLR. Finally, a standardised 500 mL NaCl 0.9% intravenous bolus was administered after which final measurements were done. Fluid responsiveness was defined as >15% increase in CI after a standardised fluid challenge. MEASUREMENTS AND MAIN RESULTS: Seven out of 30 (23%) patients demonstrated a >15% increase in CI after PLR and after a 500 mL fluid bolus. Fluid responders had a higher estimated glomerular filtration rate (eGFR) (64 (44–78) vs 37 (23–47), p=0.009) but otherwise similar patient and treatment characteristics as non-responders. Baseline measurements of cardiac output (CO), CI, SV and SVR were unrelated to PLR fluid responsiveness. The change in CI after PLR was strongly positive correlated to the change in CI after a 500 mL NaCl 0.9% fluid bolus (r=0.88, p<0.001). CONCLUSION: The results of the present study demonstrate that in patients with sepsis in the absence of shock, three out of four patients do not demonstrate a clinically relevant increase in CI after a standardised fluid challenge. Non-invasive CO monitoring in combination with a PLR test has the potential to identify patients who might benefit from fluid resuscitation and may contribute to a better tailored treatment of these patients
Improvement of Sidestream Dark Field Imaging with an Image Acquisition Stabilizer
Background: In the present study we developed, evaluated in volunteers, and clinically validated an image acquisition stabilizer (IAS) for Sidestream Dark Field (SDF) imaging.Methods: The IAS is a stainless steel sterilizable ring which fits around the SDF probe tip. The IAS creates adhesion to the imaged tissue by application of negative pressure. The effects of the IAS on the sublingual microcirculatory flow velocities, the force required to induce pressure artifacts (PA), the time to acquire a stable image, and the duration of stable imaging were assessed in healthy volunteers. To demonstrate the clinical applicability of the SDF setup in combination with the IAS, simultaneous bilateral sublingual imaging of the microcirculation were performed during a lung recruitment maneuver (LRM) in mechanically ventilated critically ill patients. One SDF device was operated handheld; the second was fitted with the IAS and held in position by a mechanic arm. Lateral drift, number of losses of image stability and duration of stable imaging of the two methods were compared.Results: Five healthy volunteers were studied. The IAS did not affect microcirculatory flow velocities. A significantly greater force had to applied onto the tissue to induced PA with compared to without IAS (0.25 ± 0.15 N without vs. 0.62 ± 0.05 N with the IAS, p < 0.001). The IAS ensured an increased duration of a stable image sequence (8 ± 2 s without vs. 42 ± 8 s with the IAS, p < 0.001). The time required to obtain a stable image sequence was similar with and without the IAS. In eight mechanically ventilated patients undergoing a LRM the use of the IAS resulted in a significantly reduced image drifting and enabled the acquisition of significantly longer stable image sequences (24 ± 5 s without vs. 67 ± 14 s with the IAS, p = 0.006).Conclusions: The present study has validated the use of an IAS for improvement of SDF imaging by demonstrating that the IAS did not affect microcirculatory perfusion in the microscopic field of view. The IAS improved both axial and lateral SDF image stability and thereby increased the critical force required to induce pressure artifacts. The IAS ensured a significantly increased duration of maintaining a stable image sequence
Rapid automatic assessment of microvascular density in sidestream dark field images
The purpose of this study was to develop a rapid and fully automatic method for the assessment of microvascular density and perfusion in sidestream dark field (SDF) images. We modified algorithms previously developed by our group for microvascular density assessment and introduced a new method for microvascular perfusion assessment. To validate the new algorithm for microvascular density assessment, we reanalyzed a selection of SDF video clips (n = 325) from a study in intensive care patients and compared the results to (semi-)manually found microvascular densities. The method for microvascular perfusion assessment (temporal SDF image contrast analysis, tSICA) was tested in several video simulations and in one high quality SDF video clip where the microcirculation was imaged before and during circulatory arrest in a cardiac surgery patient. We found that the new method for microvascular density assessment was very rapid (<30 s/clip) and correlated excellently with (semi-)manually measured microvascular density. The new method for microvascular perfusion assessment (tSICA) was shown to be limited by high cell densities and velocities, which severely impedes the applicability of this method in real SDF images. Hence, here we present a validated method for rapid and fully automatic assessment of microvascular density in SDF images. The new method was shown to be much faster than the conventional (semi-)manual method. Due to current SDF imaging hardware limitations, we were not able to automatically detect microvascular perfusion
The Development of Intensive Care Unit Acquired Hypernatremia Is Not Explained by Sodium Overload or Water Deficit:A Retrospective Cohort Study on Water Balance and Sodium Handling
Background. ICU acquired hypernatremia (IAH, serum sodium concentration (sNa) ≥ 143 mmol/L) is mainly considered iatrogenic, induced by sodium overload and water deficit. Main goal of the current paper was to answer the following questions: Can the development of IAH indeed be explained by sodium intake and water balance? Or can it be explained by renal cation excretion? Methods. Two retrospective studies were conducted: a balance study in 97 ICU patients with and without IAH and a survey on renal cation excretion in 115 patients with IAH. Results. Sodium intake within the first 48 hours of ICU admission was 12.5 [9.3–17.5] g in patients without IAH (n=50) and 15.8 [9–21.9] g in patients with IAH (n=47), p=0.13. Fluid balance was 2.3 [1–3.7] L and 2.5 [0.8–4.2] L, respectively, p=0.77. Urine cation excretion (urine Na + K) was < sNa in 99 out of 115 patients with IAH. Severity of illness was the only independent variable predicting development of IAH and low cation excretion, respectively. Conclusion. IAH is not explained by sodium intake or fluid balance. Patients with IAH are characterized by low urine cation excretion, despite positive fluid balances. The current paradigm does not seem to explain IAH to the full extent and warrants further studies on sodium handling in ICU patients
- …