1,228 research outputs found

    Accounting for spin fluctuations beyond LSDA in the density functional theory

    Full text link
    We present a method to correct the magnetic properties of itinerant systems in local spin density approximation (LSDA) and we apply it to the ferromagnetic-paramagnetic transition under pressure in a typical itinerant system, Ni3_{3}Al. We obtain a scaling of the critical fluctuations as a function of pressure equivalent to the one obtained within Moryia's theory. Moreover we show that in this material the role of the bandstructure is crucial in driving the transition. Finally we calculate the magnetic moment as a function of pressure, and find that it gives a scaling of the Curie temperature that is in good agreement with the experiment. The method can be easily extended to the antiferromagnetic case and applied, for instance, to the Fe-pnictides in order to correct the LSDA magnetic moment.Comment: 7 pages, 4 figure

    Small Fermi energy, zero point fluctuations and nonadiabaticity in MgB2_2

    Full text link
    Small Fermi energy effects are induced in MgB2_2 by the low hole doping in the σ\sigma bands which are characterized by a Fermi energy EFσ0.5E_{\rm F}^\sigma \sim 0.5 eV. We show that, due to the particularly strong deformation potential relative to the E2gE_{2g} phonon mode, lattice fluctuations are reflected in strong fluctuations in the electronic band structure. Quantum fluctuations associated to the zero-point lattice motion are responsible for an uncertainty of the Fermi energy of the order of the Fermi energy itself, leading to the breakdown of the adiabatic principle underlying the Born-Oppenheimer approximation in MgB2_2 even if ωph/EF0.10.2\omega_{\rm ph}/E_{\rm F} \sim 0.1-0.2, where ωph\omega_{\rm ph} are the characteristic phonon frequencies. This amounts to a new nonadiabatic regime, which could be relevant to other unconventional superconductors.Comment: to appear on Physical Review

    Is LaO1x_{1-x}Fx_xFeAs an electron-phonon superconductor ?

    Get PDF
    In this paper we calculate the electron-phonon coupling of the newly-discovered superconductor LaO1x_{1-x}Fx_xFeAs from first-principles, using Density Functional Perturbation Theory. For pure LaOFeAs, the calculated electron-phonon coupling constant λ=0.21\lambda=0.21 and logarithmic-averaged frequency ωln=206K\omega_{ln}=206 K, give a maximum TcT_c of 0.8 K, using the standard Migdal-Eliashberg theory. For the FF-doped compounds, we predict even smaller coupling constants, due to the strong suppression of the electronic Density of States at the Fermi level. To reproduce the experimental Tc=26KT_c=26 K, a 5-6 times larger coupling constant would be needed. Our results indicate that electron-phonon coupling is not sufficient to explain superconductivity in the newly-discovered LaO1x_{1-x}Fx_xFeAs superconductor, probably due to the importance of strong correlation effects

    Specific Heat of the Ca-Intercalated Graphite Superconductor CaC6_6

    Full text link
    The superconducting state of Ca-intercalated graphite CaC6 has been investigated by specific heat measurements. The characteristic anomaly at the superconducting transition (Tc = 11.4 K) indicates clearly the bulk nature of the superconductivity. The temperature and magnetic field dependence of the electronic specific heat are consistent with a fully-gapped superconducting order parameter. The estimated electron-phonon coupling constant is lambda = 0.60 - 0.74 suggesting that the relatively high Tc of CaC6 can be explained within the weak-coupling BCS approach.Comment: 4 pages, 4 figs, submitted to Phys. Rev. Let

    Linear response separation of a solid into atomic constituents: Li, Al, and their evolution under pressure

    Full text link
    We present the first realization of the generalized pseudoatom concept introduced by Ball, and adopt the name enatom to minimize confusion. This enatom, which consists of a unique decomposition of the total charge density (or potential) of any solid into a sum of overlapping atomiclike contributions that move rigidly with the nuclei to first order, is calculated using (numerical) linear response methods, and is analyzed for both fcc Li and Al at pressures of 0, 35, and 50 GPa. These two simple fcc metals (Li is fcc and a good superconductor in the 20-40 GPa range) show different physical behaviors under pressure, which reflects the increasing covalency in Li and the lack of it in Al. The nonrigid (deformation) parts of the enatom charge and potential have opposite signs in Li and Al; they become larger under pressure only in Li. These results establish a method of construction of the enatom, whose potential can be used to obtain a real-space understanding of the vibrational properties and electron-phonon interaction in solids.Comment: 13 pages, 9 figures, 1 table, V2: fixed problem with Fig. 7, V3: minor correction

    The role of the dopant in the superconductivity of diamond

    Get PDF
    We present an {\it ab initio} study of the recently discovered superconductivity of boron doped diamond within the framework of a phonon-mediated pairing mechanism. The role of the dopant, in substitutional position, is unconventional in that half of the coupling parameter λ\lambda originates in strongly localized defect-related vibrational modes, yielding a very peaked Eliashberg α2F(ω)\alpha^2F(\omega) function. The electron-phonon coupling potential is found to be extremely large and TC_C is limited by the low value of the density of states at the Fermi level

    Effects of magnetism and doping on the electron-phonon coupling in BaFe2_{2}As2_{2}

    Full text link
    We calculate the effect of local magnetic moments on the electron-phonon coupling in BaFe2_{2}As2+δ_{2}+\delta using the density functional perturbation theory. We show that the magnetism enhances the total electron-phonon coupling by 50\sim 50%, up to λ0.35\lambda \lesssim 0.35, still not enough to explain the high critical temperature, but strong enough to have a non-negligible effect on superconductivity, for instance, by frustrating the coupling with spin fluctuations and inducing order parameter nodes. The enhancement comes mostly from a renormalization of the electron-phonon matrix elements. We also investigate, in the rigid band approximation, the effect of doping, and find that λ\lambda versus doping does not mirror the behavior of the density of states; while the latter decreases upon electron doping, the former does not, and even increases slightly.Comment: 4 pages, 3 figure

    Superconductivity in Heavy Alkaline-Earths Intercalated Graphites

    Full text link
    We report the discovery of superconductivity below 1.65(6) K in Sr-intercalated graphite SrC6, by susceptibility and specific heat (Cp) measurements. In comparison with CaC6, we found that the anisotropy of the upper critical fields for SrC6 is much reduced. The Cp anomaly at Tc is smaller than the BCS prediction indicating an anisotropic superconducting gap for SrC6 similar to CaC6. The significantly lower Tc of SrC6 as compared to CaC6 can be understood in terms of "negative" pressure effects, which decreases the electron-phonon coupling for both in-plane intercalant and the out-of-plane C phonon modes. We observed no superconductivity for BaC6 down to 0.3 K.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Electrons and phonons in the ternary alloy CaAl2x_{2-x}Six_x} as a function of composition

    Full text link
    We report a detailed first-principles study of the structural, electronic and vibrational properties of the superconducting C32_{32} phase of the ternary alloy CaAl2x_{2-x}Six_x, both in the experimental range 0.6x1.20.6 \leq x \leq 1.2, for which the alloy has been synthesised, and in the theoretical limits of high aluminium and high silicon concentration. Our results indicate that, in the experimental range, the dependence of the electronic bands on composition is well described by a rigid-band model, which breaks down outside this range. Such a breakdown, in the (theoretical) limit of high aluminium concentration, is connected to the appearance of vibrational instabilities, and results in important differences between CaAl2_2 and MgB2_2. Unlike MgB2_2, the interlayer band and the out-of-plane phonons play a major role on the stability and superconductivity of CaAlSi and related C32_{32} intermetallic compounds
    corecore