2,513 research outputs found
Gauge links for transverse momentum dependent correlators at tree-level
In this paper we discuss the incorporation of gauge links in hadronic matrix
elements that describe the soft hadronic physics in high energy scattering
processes. In this description the matrix elements appear in soft correlators
and they contain non-local combinations of quark and gluon fields. In our
description we go beyond the collinear approach in which case also the
dependence on transverse momenta of partons is taken into consideration. The
non-locality in the transverse direction leads to a complex gauge link
structure for the full process, in which color is entangled, even at
tree-level. We show that at tree-level in a 1-parton unintegrated (1PU)
situation, in which only the transverse momentum of one of the initial state
hadrons is relevant, one can get a factorized expression involving transverse
momentum dependent (TMD) distribution functions. We point out problems at the
level of two initial state hadrons, even for relatively simple processes such
as Drell-Yan scattering.Comment: 25 pages, corrected typos and updated reference
Insights into endotoxin-mediated lung inflammation and future treatment strategies
Introduction: Airway inflammatory disorders are prevalent diseases in need of better management and new therapeutics. Immunotherapies offer a solution to the problem of corticosteroid resistance. Areas covered: The current review focuses on lipopolysaccharide (Gram-negative bacterial endotoxin)-mediated inflammation in the lung and the animal models used to study related diseases. Endotoxin-induced lung pathology is usually initiated by antigen presenting cells (APC). We will discuss different subsets of APC including lung dendritic cells and macrophages, and their role in responding to endotoxin and environmental challenges. Expert commentary: The pharmacotherapeutic considerations to combat airway inflammation should cost-effectively improve quality of life with sustainable and safe strategies. Selectively targeting APCs in the lung offer the potential for a promising new strategy for the better management and treatment of inflammatory lung disease
Single Spin Asymmetry in Lepton Angular Distribution of Drell-Yan Processes
We study the single spin asymmetry in the lepton angular distribution of
Drell-Yan processes in the frame work of collinear factorization. The asymmetry
has been studied in the past and different results have been obtained. In our
study we take an approach different than that used in the existing study. We
explicitly calculate the transverse-spin dependent part of the differential
cross-section with suitable parton states. Because the spin is transverse, one
has to take multi-parton states for the purpose. Our result agrees with one of
the existing results. A possible reason for the disagreement with others is
discussed.Comment: Typos corrected. Conclusions unchange
Soft-Gluon-Pole Contribution in Single Transverse-Spin Asymmetries of Drell-Yan Processes
We use multi-parton states to examine the leading order collinear
factorization of single transverse-spin asymmetries in Drell-Yan processes.
Twist-3 operators are involved in the factorization. We find that the so-called
soft-gluon-pole contribution in the factorization must exist in order to make
the factorization correct. This contribution comes from the corresponding
cross-section at one-loop, while the hard-pole contribution in the
factorization comes from the cross-section at tree-level. Although the two
contributions come from results at different orders, their perturbative
coefficient functions in the factorization are at the same order. This is in
contrast to factorizations only involving twist-2 operators. The
soft-gluon-pole contribution found in this work is in agreement with that
derived in a different way. For the hard-pole contributions we find an extra
contribution from an extra parton process contributing to the asymmetries. We
also solve a part of discrepancy in evolutions of the twist-3 operator. The
method presented here for analyzing the factorization can be generalized to
other processes and can be easily used for studying factorizations at higher
orders, because the involved calculations are of standard scattering
amplitudes.Comment: typos eliminated. Published in JHEP 1104:062,201
Bessel-Weighted Asymmetries in Semi Inclusive Deep Inelastic Scattering
The concept of weighted asymmetries is revisited for semi-inclusive deep
inelastic scattering. We consider the cross section in Fourier space, conjugate
to the outgoing hadron's transverse momentum, where convolutions of transverse
momentum dependent parton distribution functions and fragmentation functions
become simple products. Individual asymmetric terms in the cross section can be
projected out by means of a generalized set of weights involving Bessel
functions. Advantages of employing these Bessel weights are that they suppress
(divergent) contributions from high transverse momentum and that soft factors
cancel in (Bessel-) weighted asymmetries. Also, the resulting compact
expressions immediately connect to previous work on evolution equations for
transverse momentum dependent parton distribution and fragmentation functions
and to quantities accessible in lattice QCD. Bessel weighted asymmetries are
thus model independent observables that augment the description and our
understanding of correlations of spin and momentum in nucleon structure.Comment: Matches published version, JHEP style, 36 pages and 2 figures, minor
correction
Increased Adiposity, Dysregulated Glucose Metabolism and Systemic Inflammation in Galectin-3 KO Mice
PMCID: PMC3579848This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
- …