217 research outputs found

    On-shell supersymmetry for massive multiplets

    Full text link
    The consequences of on-shell supersymmetry are studied for scattering amplitudes with massive particles in four dimensions. Using the massive version of the spinor helicity formalism the supersymmetry transformations relating products of on-shell states are derived directly from the on-shell supersymmetry algebra for any massive representation. Solutions to the resulting Ward identities can be constructed as functions on the on-shell superspaces that are obtained from the coherent state method. In simple cases it is shown that these superspaces allow one to construct explicitly supersymmetric scattering amplitudes. Supersymmetric on-shell recursion relations for tree-level superamplitudes with massive particles are introduced. As examples, simple supersymmetric amplitudes are constructed in SQCD, the Abelian Higgs model, the Coulomb branch of N=4 super Yang-Mills, QCD with an effective Higgs-gluon coupling and for massive vector boson currents.Comment: 49+9 pages, 4 figures, v2: references updated, typos corrected, examples added, v3: final PRD versio

    Symmetries of the Self-Dual Sector of N=4 Super Yang-Mills on the Light Cone

    Full text link
    A recent paper proposes a way of constructing infinite dimensional symmetries of the non-supersymmetric self-dual Yang-Mills action using isometries of the space-time. We review the Lagrangian formulation of N = 4 super Yang-Mills MHV rules and extend the approach taken for the non-supersymmetric case to construct infinite dimensional symmetries of self-dual N = 4 super Yang-Mills.Comment: 22 pages, 8 figures. V[2] Added references and minor typographical correction

    Three particle superstring amplitudes with massive legs

    Full text link
    On-shell superspaces and associated spinor helicity techniques give an efficient formulation of the Ward identities of on-shell supersymmetry for scattering amplitudes and supply tools to construct their solutions. Based on these techniques in this paper the general solutions of the Ward identities are presented for three particle scattering amplitudes with one, two or three massive legs for simple supersymmetry in ten and eight dimensions. It is shown in examples how these solutions may be used to obtain concrete amplitudes for the closed (IIB) and open superstring in a flat background. Explicit results include all three point amplitudes with one massive leg whose functional form is shown to be dictated completely by super-Poincare symmetry. The resulting surprisingly simple series only involves massive superfields labelled by completely symmetric little group representations. The extension to more general explicit three and higher point amplitudes in string theory is initiated. In appendices the field content of the fundamental massive superfields of the open and closed superstring are listed in terms of the Dynkin labels of a variety of groups which may be of independent interest.Comment: 45 pages. v2: typos corrected, references adde

    The Whitham Deformation of the Dijkgraaf-Vafa Theory

    Full text link
    We discuss the Whitham deformation of the effective superpotential in the Dijkgraaf-Vafa (DV) theory. It amounts to discussing the Whitham deformation of an underlying (hyper)elliptic curve. Taking the elliptic case for simplicity we derive the Whitham equation for the period, which governs flowings of branch points on the Riemann surface. By studying the hodograph solution to the Whitham equation it is shown that the effective superpotential in the DV theory is realized by many different meromorphic differentials. Depending on which meromorphic differential to take, the effective superpotential undergoes different deformations. This aspect of the DV theory is discussed in detail by taking the N=1^* theory. We give a physical interpretation of the deformation parameters.Comment: 35pages, 1 figure; v2: one section added to give a physical interpretation of the deformation parameters, one reference added, minor corrections; v4: minor correction

    Simple superamplitudes in higher dimensions

    Full text link
    We provide simple superspaces based on a formulation of spinor helicity in general even dimensions. As a distinguishing feature these spaces admit a fermionic super-momentum conserving delta function solution to the on-shell supersymmetry Ward identities. Using these solutions, we present beautifully simple formulae for the complete three, four and five point superamplitudes in maximal super Yang-Mills theory in eight dimensions, and for the three and four point superamplitudes in ten dimensional type IIB supergravity. In addition, we discuss the exceptional kinematics of the three point amplitude, and the supersymmetric spinorial BCFW recursion, in general dimensions.Comment: 34 page

    On-shell Recursion in String Theory

    Full text link
    We prove that all open string theory disc amplitudes in a flat background obey Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion relations, up to a possible reality condition on a kinematic invariant. Arguments that the same holds for tree level closed string amplitudes are given as well. Non-adjacent BCFW-shifts are related to adjacent shifts through monodromy relations for which we provide a novel CFT based derivation. All possible recursion relations are related by old-fashioned string duality. The field theory limit of the analysis for amplitudes involving gluons is explicitly shown to be smooth for both the bosonic string as well as the superstring. In addition to a proof a less rigorous but more powerful argument based on the underlying CFT is presented which suggests that the technique may extend to a much more general setting in string theory. This is illustrated by a discussion of the open string in a constant B-field background and the closed string on the level of the sphere.Comment: 36 + 9 pages text, one figure, v3: added discussion on relation to old-fashioned factorization, typos corrected, published versio

    Massive amplitudes on the Coulomb branch of N=4 SYM

    Full text link
    We initiate a systematic study of amplitudes with massive external particles on the Coulomb-branch of N=4 super Yang Mills theory: 1) We propose that (multi-)soft-scalar limits of massless amplitudes at the origin of moduli space can be used to determine Coulomb-branch amplitudes to leading order in the mass. This is demonstrated in numerous examples. 2) We find compact explicit expressions for several towers of tree-level amplitudes, including scattering of two massive W-bosons with any number of positive helicity gluons, valid for all values of the mass. 3) We present the general structure of superamplitudes on the Coulomb branch. For example, the n-point "MHV-band" superamplitude is proportional to a Grassmann polynomial of mixed degree 4 to 12, which is uniquely determined by supersymmetry. We find explicit tree-level superamplitudes for this MHV band and for other simple sectors of the theory. 4) Dual conformal generators are constructed, and we explore the dual conformal properties of the simplest massive amplitudes. Our compact expressions for amplitudes and superamplitudes should be of both theoretical and phenomenological interest; in particular the tree-level results carry over to truncations of the theory with less supersymmetry.Comment: 29 pages, 1 figur

    No triangles on the moduli space of maximally supersymmetric gauge theory

    Full text link
    Maximally supersymmetric gauge theory in four dimensions has a remarkably simple S-matrix at the origin of its moduli space at both tree and loop level. This leads to the question what, if any, of this structure survives at the complement of this one point. Here this question is studied in detail at one loop for the branch of the moduli space parameterized by a vacuum expectation value for one complex scalar. Motivated by the parallel D-brane picture of spontaneous symmetry breaking a simple relation is demonstrated between the Lagrangian of broken super Yang-Mills theory and that of its higher dimensional unbroken cousin. Using this relation it is proven both through an on- as well as an off-shell method there are no so-called triangle coefficients in the natural basis of one-loop functions at any finite point of the moduli space for the theory under study. The off-shell method yields in addition absence of rational terms in a class of theories on the Coulomb branch which includes the special case of maximal supersymmetry. The results in this article provide direct field theory evidence for a recently proposed exact dual conformal symmetry motivated by the AdS/CFT correspondence.Comment: 39 pages, 4 figure

    Tree-Level Formalism

    Full text link
    We review two novel techniques used to calculate tree-level scattering amplitudes efficiently: MHV diagrams, and on-shell recursion relations. For the MHV diagrams, we consider applications to tree-level amplitudes and focus in particular on the N=4 supersymmetric formulation. We also briefly describe the derivation of loop amplitudes using MHV diagrams. For the recursion relations, after presenting their general proof, we discuss several applications to massless theories with and without supersymmetry, to theories with massive particles, and to graviton amplitudes in General Relativity. This article is an invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories".Comment: 40 pages, 8 figures, invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories", R. Roiban(ed), M. Spradlin(ed), A. Volovich(ed); v2: minor corrections, references adde

    N=1 G_2 SYM theory and Compactification to Three Dimensions

    Full text link
    We study four dimensional N=2 G_2 supersymmetric gauge theory on R^3\times S^1 deformed by a tree level superpotential. We will show that the exact superpotential can be obtained by making use of the Lax matrix of the corresponding integrable model which is the periodic Toda lattice based on the dual of the affine G_2 Lie algebra. At extrema of the superpotential the Seiberg-Witten curve typically factorizes, and we study the algebraic equations underlying this factorization. For U(N) theories the factorization was closely related to the geometrical engineering of such gauge theories and to matrix model descriptions, but here we will find that the geometrical interpretation is more mysterious. Along the way we give a method to compute the gauge theory resolvent and a suitable set of one-forms on the Seiberg-Witten curve. We will also find evidence that the low-energy dynamics of G_2 gauge theories can effectively be described in terms of an auxiliary hyperelliptic curve.Comment: 27 pages, late
    • …
    corecore