153 research outputs found

    Current large deviations in a driven dissipative model

    Full text link
    We consider lattice gas diffusive dynamics with creation-annihilation in the bulk and maintained out of equilibrium by two reservoirs at the boundaries. This stochastic particle system can be viewed as a toy model for granular gases where the energy is injected at the boundary and dissipated in the bulk. The large deviation functional for the particle currents flowing through the system is computed and some physical consequences are discussed: the mechanism for local current fluctuations, dynamical phase transitions, the fluctuation-relation

    Current reservoirs in the simple exclusion process

    Full text link
    We consider the symmetric simple exclusion process in the interval [N,N][-N,N] with additional birth and death processes respectively on (NK,N](N-K,N], K>0K>0, and [N,N+K)[-N,-N+K). The exclusion is speeded up by a factor N2N^2, births and deaths by a factor NN. Assuming propagation of chaos (a property proved in a companion paper "Truncated correlations in the stirring process with births and deaths") we prove convergence in the limit NN\to \infty to the linear heat equation with Dirichlet condition on the boundaries; the boundary conditions however are not known a priori, they are obtained by solving a non linear equation. The model simulates mass transport with current reservoirs at the boundaries and the Fourier law is proved to hold

    A diffusive system driven by a battery or by a smoothly varying field

    Full text link
    We consider the steady state of a one dimensional diffusive system, such as the symmetric simple exclusion process (SSEP) on a ring, driven by a battery at the origin or by a smoothly varying field along the ring. The battery appears as the limiting case of a smoothly varying field, when the field becomes a delta function at the origin. We find that in the scaling limit, the long range pair correlation functions of the system driven by a battery turn out to be very different from the ones known in the steady state of the SSEP maintained out of equilibrium by contact with two reservoirs, even when the steady state density profiles are identical in both models

    Metastability in the dilute Ising model

    Full text link
    Consider Glauber dynamics for the Ising model on the hypercubic lattice with a positive magnetic field. Starting from the minus configuration, the system initially settles into a metastable state with negative magnetization. Slowly the system relaxes to a stable state with positive magnetization. Schonmann and Shlosman showed that in the two dimensional case the relaxation time is a simple function of the energy required to create a critical Wulff droplet. The dilute Ising model is obtained from the regular Ising model by deleting a fraction of the edges of the underlying graph. In this paper we show that even an arbitrarily small dilution can dramatically reduce the relaxation time. This is because of a catalyst effect---rare regions of high dilution speed up the transition from minus phase to plus phase.Comment: 49 page

    Long range correlations and phase transition in non-equilibrium diffusive systems

    Full text link
    We obtain explicit expressions for the long range correlations in the ABC model and in diffusive models conditioned to produce an atypical current of particles.In both cases, the two-point correlation functions allow to detect the occurrence of a phase transition as they become singular when the system approaches the transition

    Phase fluctuations in the ABC model

    Full text link
    We analyze the fluctuations of the steady state profiles in the modulated phase of the ABC model. For a system of LL sites, the steady state profiles move on a microscopic time scale of order L3L^3. The variance of their displacement is computed in terms of the macroscopic steady state profiles by using fluctuating hydrodynamics and large deviations. Our analytical prediction for this variance is confirmed by the results of numerical simulations

    Surface tension in the dilute Ising model. The Wulff construction

    Full text link
    We study the surface tension and the phenomenon of phase coexistence for the Ising model on \mathbbm{Z}^d (d2d \geqslant 2) with ferromagnetic but random couplings. We prove the convergence in probability (with respect to random couplings) of surface tension and analyze its large deviations : upper deviations occur at volume order while lower deviations occur at surface order. We study the asymptotics of surface tension at low temperatures and relate the quenched value τq\tau^q of surface tension to maximal flows (first passage times if d=2d = 2). For a broad class of distributions of the couplings we show that the inequality τaτq\tau^a \leqslant \tau^q -- where τa\tau^a is the surface tension under the averaged Gibbs measure -- is strict at low temperatures. We also describe the phenomenon of phase coexistence in the dilute Ising model and discuss some of the consequences of the media randomness. All of our results hold as well for the dilute Potts and random cluster models

    Phase diagram of a generalized ABC model on the interval

    Full text link
    We study the equilibrium phase diagram of a generalized ABC model on an interval of the one-dimensional lattice: each site i=1,...,Ni=1,...,N is occupied by a particle of type \a=A,B,C, with the average density of each particle species N_\a/N=r_\a fixed. These particles interact via a mean field non-reflection-symmetric pair interaction. The interaction need not be invariant under cyclic permutation of the particle species as in the standard ABC model studied earlier. We prove in some cases and conjecture in others that the scaled infinite system N\rw\infty, i/N\rw x\in[0,1] has a unique density profile \p_\a(x) except for some special values of the r_\a for which the system undergoes a second order phase transition from a uniform to a nonuniform periodic profile at a critical temperature Tc=3rArBrC/2πT_c=3\sqrt{r_A r_B r_C}/2\pi.Comment: 25 pages, 6 figure

    Colligative properties of solutions: I. Fixed concentrations

    Full text link
    Using the formalism of rigorous statistical mechanics, we study the phenomena of phase separation and freezing-point depression upon freezing of solutions. Specifically, we devise an Ising-based model of a solvent-solute system and show that, in the ensemble with a fixed amount of solute, a macroscopic phase separation occurs in an interval of values of the chemical potential of the solvent. The boundaries of the phase separation domain in the phase diagram are characterized and shown to asymptotically agree with the formulas used in heuristic analyses of freezing point depression. The limit of infinitesimal concentrations is described in a subsequent paper.Comment: 28 pages, 1 fig; see also math-ph/0407035 (both to appear in JSP

    On the dynamical behavior of the ABC model

    Full text link
    We consider the ABC dynamics, with equal density of the three species, on the discrete ring with NN sites. In this case, the process is reversible with respect to a Gibbs measure with a mean field interaction that undergoes a second order phase transition. We analyze the relaxation time of the dynamics and show that at high temperature it grows at most as N2N^2 while it grows at least as N3N^3 at low temperature
    corecore