4 research outputs found

    Adsorption Efficiency of Cement Impregnated Magnesium Oxide on the Removal of Fluoride

    Get PDF
    Presence of fluoride in drinking water above the prescribed limit may lead to a severe health complication. We present in this paper the fluoride removal capacity of cement impregnated MgO (MgO-cement) from drinking water. MgO-cement was prepared by adding magnesium oxide (MgO) into the cement slurry solution in the ratio of 1:10. Batch experiments were performed as a function of adsorbent dose, contact time, effect of pH and effect of co-ions. The percentage removal decreases with increasing initial fluoride concentration. Co-ions effect revealed that hydroxide ion was found to interfere more with fluoride removal followed by bicarbonate and least effect with sulphate. Reaction mechanism follows Freundlich isotherms. From the kinetic study we observed that uptake of fluoride ion is fast in the first sixty minutes and equilibrium time found to be independent of the initial fluoride concentration. Adsorption kinetics followed the pseudo second order model showing that the sorption of fluoride is a complex process. Surface as well as intraparticle diffusion contribute in the sorption process. No leaching of magnesium in the treated water was detected

    Infra Red Spectra of Different Species of Cultivated Oyster Mushrooms Possible Tool for Identifying Bioactive Compounds and Establishing Taxonomic Linkage

    Get PDF
    Mushrooms are macrofungi that serve as a vegetarian source of protein along with various bio-active molecules of primary health importance. The activity of the bio-active molecules range from antioxidant, immunomodulation, hepatoprotection. Cultivated oyster mushrooms are also rich in these components which may be estimated quantitatively by skill intensive ‘destructive’ chemical techniques. Infra Red spectroscopy provides a non-destructive user friendly technique to quickly assess the presence of bio-active compounds in mushroom species to be used as a quality control measure as this non-destructive tool can be used to segregate mushroom harvest according to availability of bioactive compounds. IR spectra based strain classification and taxa delimitation of mushroom samples are also attempted vis a vis DNA sequence based phylogeny analysis of the same, but no correlation is observed between the two types of phylogeny analysis

    Nanoscale Copper II Oxide An Efficient and Reusable Adsorbent for Removal of Nickel II from Contaminated Water

    Get PDF
    The present work describes the synthesis of copper(II) oxide nanoparticles (NPs) with high surface area (52.11 m2/g) and its Ni(II) adsorption efficiency from contaminated water at room temperature. Copper (II) oxide NPs are able to remove Ni(II) as 93.6 per cent and 93.7 per cent using 500 ppb & 1000 ppb initial concentration of nickel at near-neutral pH respectively. CuO NPs is very much effective to remove more than 75 per cent nickel over a wide range of pH even in presence of other competing ions like Cd2+, Pb2+, Cr6+, SO42-. Prepared CuO NPs can be used to remove Ni(II) from aqueous solution in real field application
    corecore