3 research outputs found

    Comparison of Undergraduate Student Writing in Engineering Disciplines at Campuses with Varying Demographics

    Get PDF
    Writing is generally recognized as fundamental to the formation and communication of scientific and technical knowledge to peer groups and general audiences. Often, persuasive writing is an essential attribute emphasized by industries and businesses for a successful career in STEM fields. Nevertheless, the current scenario is that students in STEM fields, with their increased demand for more specialized skills in fewer credit hours combined with a lack of emphasis on writing from engineering faculty members, make addressing this need difficult. In addition, students in engineering fields often do not value writing skills and underestimate the amount of writing they will do in their careers. Hence, it is essential to understand and quantify the level of writing skills STEM students exhibit in their technical courses so that mitigation efforts can be designed using commonly available resources to enhance this important skillset among the students, including university writing centers. A research question was posed to study this aspect of technical writing: How do STEM students at institutions conceive of writing and its role in classroom laboratories? This research was conducted at three different universities with students of varied demographics, including one which is designated as a Hispanic-serving institution, via a sequential mixed-methods design. The demography variation among the institutions includes the level of college preparation among students and the mix of ethnicity to see if there are variations among certain groups. Although the sample size is small, the goal was to establish a methodology and a preliminary outcome set that could be used in further research with larger populations. Research data in the form of reports and surveys, were collected from groups of students from four distinct campuses to ascertain the technical writing capability of each group and provide a comparison to better understand the level of intervention required. The quantitative data was collected throughout the academic year through Likert scale surveys as well as rubric-based evaluation of reports. The research design, methodology, and results of the research findings and the proposed mitigation efforts to improve student writing in STEM fields are presented in the paper

    Board 121: Using Tutor-led Support to Enhance Engineering Student Writing for All

    Get PDF
    Writing Assignment Tutor Training in STEM (WATTS) is part of a three-year NSF IUSE grant with participants at three institutions. This research project seeks to determine to what extent students in the WATTS project show greater writing improvement than students using writing tutors not trained in WATTS. The team collected baseline, control, and experimental data. Baseline data included reports written by engineering and engineering technology students with no intervention to determine if there were variations in written communication related to student demographics and institutions. Control data included reports written by students who visited tutors with no WATTS training, and experimental data included reports written by students who visited tutors who were WATTS-trained. Reports were evaluated by the research team using a slightly modified version of the American Association of Colleges and Universities (AAC&U) Written Communication VALUE Rubric. Baseline data assessment also provided an opportunity to test the effectiveness of the rubric. This paper presents findings from the analysis of the control and experimental data to determine the impact of WATTS on student writing in lab reports. An aggregate score for each lab report was determined by averaging the reviewer scores. An analysis was run to determine if there was a statistical difference between pre-tutoring lab report scores from the baseline, control, and experimental rubric scores for each criterion and total scores; there was not a statistically significant difference. The research team ran a Wilcoxon signed-rank test to assess the relationship between control and experimental aggregate rubric scores for each criterion. The preliminary analysis of the control and experimental data shows that the WATTS intervention has a positive, statistically significant impact on written communication skills regardless of the campus student demographics. Since WATTS has been shown to be a low-cost, effective intervention to improve engineering and engineering technology students’ written communication skills at these participating campuses, it has potential use for other institutions to positively impact their students’ written communication

    Board 317: Improving Undergraduate STEM Writing: A Collaboration Between Instructors and Writing Center Directors to Improve Peer-Writing Tutor Feedback

    Get PDF
    Undergraduate STEM writing skills, especially in engineering fields, need improvement. Yet students in engineering fields often do not value writing skills and underestimate the amount of writing they will do in their careers. University writing centers can be a helpful resource, but peer writing tutors need to be prepared for the differences between writing for the humanities and writing in STEM fields. The Writing Assignment Tutor Training in STEM (WATTS) model is designed to improve tutor confidence and student writing. In this innovative training, the writing center supervisor collaborates with the STEM instructor to create a one-hour tutor-training where the tutors learn about the assignment content, vocabulary, and expectations. This multidisciplinary collaborative project builds on previous investigative work to determine the impact of WATTS on students, tutors, and faculty and to identify its mitigating and moderating effects. Data has been collected and analyzed from pre- and post- training surveys, interviews, and focus groups. In addition, the project studies WATTS effects on student writing pre- and post-tutoring. The team will use these results to develop a replicable, sustainable model for future expansion to other institutions and fields. By systematically collecting data and testing WATTS, the investigators will be able to identify its mitigating and moderating effects on different stakeholders and contribute valuable knowledge to STEM fields. This approach assesses the elements of the model that have the most impact and the extent to which WATTS can be used to increase collaboration between engineering instructors and writing centers. The project enables the investigators to expand WATTS to additional engineering courses, test key factors with more instructors, refine the process, and position WATTS for dissemination to a broad audience. As the cost of higher education rises, institutions are pressured to graduate students in four years and engineering curricula are becoming more complex. WATTS presents an economical, effective method to improve student writing in the discipline. Several factors indicate that it has the potential for broad dissemination and impact and will provide a foundation for a sustainable model for future work, as instructors become trainers for their colleagues, allowing additional ongoing expansion and implementation. WATTS serves as a model for institutions (large or small) to capitalize on existing infrastructure and resources to achieve large-scale improvements to undergraduate STEM writing while increasing interdisciplinary collaboration and institutional support
    corecore