8,666 research outputs found

    The Tree-Particle-Mesh N-body Gravity Solver

    Get PDF
    The Tree-Particle-Mesh (TPM) N-body algorithm couples the tree algorithm for directly computing forces on particles in an hierarchical grouping scheme with the extremely efficient mesh based PM structured approach. The combined TPM algorithm takes advantage of the fact that gravitational forces are linear functions of the density field. Thus one can use domain decomposition to break down the density field into many separate high density regions containing a significant fraction of the mass but residing in a very small fraction of the total volume. In each of these high density regions the gravitational potential is computed via the tree algorithm supplemented by tidal forces from the external density distribution. For the bulk of the volume, forces are computed via the PM algorithm; timesteps in this PM component are large compared to individually determined timesteps in the tree regions. Since each tree region can be treated independently, the algorithm lends itself to very efficient parallelization using message passing. We have tested the new TPM algorithm (a refinement of that originated by Xu 1995) by comparison with results from Ferrell & Bertschinger's P^3M code and find that, except in small clusters, the TPM results are at least as accurate as those obtained with the well-established P^3M algorithm, while taking significantly less computing time. Production runs of 10^9 particles indicate that the new code has great scientific potential when used with distributed computing resources.Comment: 24 pages including 9 figures, uses aaspp4.sty; revised to match published versio

    Determination of the Her-2/neu gene amplification status in cytologic breast cancer specimens using automated silver-enhanced in-situ hybridization (SISH)

    Full text link
    Silver-enhanced in-situ hybridization (SISH) is an emerging tool for the determination of the Her-2/neu amplification status in breast cancer. SISH is technically comparable to fluorescence in-situ hybridization (FISH) but does not require a fluorescence microscope for its interpretation. Although recent studies on histologic evaluations of SISH are promising, we aimed to evaluate its performance on 71 cytologic breast cancer specimens with the new combined Her-2/Chr17 probe. Her-2/neu status as routinely determined by FISH was available for all patients. We found SISH signals in cytologic cell blocks and smear specimens easy to evaluate in most cases. Small numbers of tumor cells and difficulties in identifying tumor cells in lymphocyte-rich backgrounds were limiting factors. Her-2/neu status, as determined by Her-2/Chr17 SISH, was basically identical to the results of the corresponding FISH. The discrepancies were mainly owing to the heterogeneity of Her-2/neu amplification in the tumor tissue. Interobserver agreement for the SISH evaluation was high (kappa value: 0.972). We conclude that Her-2/Chr17 SISH is a useful and accurate method for the evaluation of the Her-2/neu gene amplification status in cytologic breast cancer specimens, particularly in metastatic breast cancer lesions. The advantages of signal permanency and bright-field microscopic result interpretation make this technique an attractive alternative to the current FISH-based gold standard

    The symbiotic star CH Cygni. III. A precessing radio jet

    Get PDF
    VLA, MERLIN and Hubble Space Telescope imaging observations of the extended regions of the symbiotic system CH Cygni are analysed. These extensions are evidence of a strong collimation mechanism, probably an accretion disk surrounding the hot component of the system. Over 16 years (between 1985 and 2001) the general trend is that these jets are seen to precess. Fitting a simple ballistic model of matter ejection to the geometry of the extended regions suggests a period of 6520 +/- 150 days, with a precession cone opening angle of 35 +/- 1 degrees. This period is of the same order as that proposed for the orbital period of the outer giant in the system, suggesting a possible link between the two. Anomalous knots in the emission, not explained by the simple model, are believed to be the result of older, slower moving ejecta, or possibly jet material that has become disrupted through sideways interaction with the surrounding medium.Comment: 9 pages, 4 figure

    Evolution of the Cluster Correlation Function

    Full text link
    We study the evolution of the cluster correlation function and its richness-dependence from z = 0 to z = 3 using large-scale cosmological simulations. A standard flat LCDM model with \Omega_m = 0.3 and, for comparison, a tilted \Omega_m = 1 model, TSCDM, are used. The evolutionary predictions are presented in a format suitable for direct comparisons with observations. We find that the cluster correlation strength increases with redshift: high redshift clusters are clustered more strongly (in comoving scale) than low redshift clusters of the same mass. The increased correlations with redshift, in spite of the decreasing mass correlation strength, is caused by the strong increase in cluster bias with redshift: clusters represent higher density peaks of the mass distribution as the redshift increases. The richness-dependent cluster correlation function, presented as the correlation-scale versus cluster mean separation relation, R_0 - d, is found to be, remarkably, independent of redshift to z <~ 2 for LCDM and z <~ 1 for TCDM (for a fixed correlation function slope and cluster mass within a fixed comoving radius). The non-evolving R_0 - d relation implies that both the comoving clustering scale and the cluster mean separation increase with redshift for the same mass clusters so that the R_0 - d relation remains essentially unchanged. The evolution of the R_0 - d relation from z ~ 0 to z ~ 3 provides an important new tool in cosmology; it can be used to break degeneracies that exist at z ~ 0 and provide precise determination of cosmological parameters.Comment: AASTeX, 15 pages, including 5 figures, accepted version for publication in ApJ, vol.603, March 200

    Nanometer-scale striped surface terminations on fractured SrTiO3_{3} surfaces

    Full text link
    Using cross-sectional scanning tunneling microscopy on in situ fractured SrTiO3_{3}, one of the most commonly used substrates for the growth of complex oxide thin films and superlattices, atomically smooth terraces have been observed on (001) surfaces. Furthermore, it was discovered that fracturing this material at room temperature results in the formation of stripe patterned domains having characteristic widths (~10 nm to ~20 nm) of alternating surface terminations that extend over a long-range. Spatial characterization utilizing spectroscopy techniques revealed a strong contrast in the electronic structure of the two domains. Combining these results with topographic data, we are able to assign both TiO2_{2} and SrO terminations to their respective domains. The results of this proof-of-principle experiment reveal that fracturing this material leads to reproducibly flat surfaces that can be characterized at the atomic-scale and suggests that this technique can be utilized for the study of technologically relevant complex oxide interfaces.Comment: 15 pages, 4 figure

    GMRT Observations of the 2006 outburst of the Nova RS Ophiuchi: First detection of emission at radio frequencies < 1.4 GHz

    Full text link
    The first low radio frequency (<1.4 GHz) detection of the outburst of the recurrent nova RS Ophiuchi is presented in this letter. Radio emission was detected at 0.61 GHz on day 20 with a flux density of ~48 mJy and at 0.325 GHz on day 38 with a flux density of ~ 44 mJy. This is in contrast with the 1985 outburst when it was not detected at 0.327 GHz even on day 66. The emission at low radio frequencies is clearly non-thermal and is well-explained by a synchrotron spectrum of index alpha ~ -0.8 (S propto nu^alpha) suffering foreground absorption due to the pre-existing, ionized, warm, clumpy red giant wind. The absence of low frequency radio emission in 1985 and the earlier turn-on of the radio flux in the current outburst are interpreted as being due to higher foreground absorption in 1985 compared to that in 2006, suggesting that the overlying wind densities in 2006 are only ~30% of those in 1985.Comment: 14 pages, 1 figure. Accepted for publication in ApJ

    Spectroscopic determination of the s-wave scattering lengths of 86Sr and 88Sr

    Get PDF
    We report the use of photoassociative spectroscopy to determine the ground state s-wave scattering lengths for the main bosonic isotopes of strontium, 86Sr and 88Sr. Photoassociative transitions are driven with a laser red-detuned by up to 1400 GHz from the 1S0-1P1 atomic resonance at 461 nm. A minimum in the transition amplitude for 86Sr at -494+/-5 GHz allows us to determine the scattering lengths 610a0 < a86 < 2300a0 for 86Sr and a much smaller value of -1a0 < a88 < 13a0 for 88Sr.Comment: 4 pages, 3 figures, submitted to Physical Review Letter
    corecore