178 research outputs found

    Search for the Proton Decay Mode proton to neutrino K+ in Soudan 2

    Full text link
    We have searched for the proton decay mode proton to neutrino K+ using the one-kiloton Soudan 2 high resolution calorimeter. Contained events obtained from a 3.56 kiloton-year fiducial exposure through June 1997 are examined for occurrence of a visible K+ track which decays at rest into mu+ nu or pi+ pi0. We found one candidate event consistent with background, yielding a limit, tau/B > 4.3 10^{31} years at 90% CL with no background subtraction.Comment: 13 pages, Latex, 3 tables and 3 figures, Accepted by Physics Letters

    Massive binary black holes in galactic nuclei and their path to coalescence

    Full text link
    Massive binary black holes form at the centre of galaxies that experience a merger episode. They are expected to coalesce into a larger black hole, following the emission of gravitational waves. Coalescing massive binary black holes are among the loudest sources of gravitational waves in the Universe, and the detection of these events is at the frontier of contemporary astrophysics. Understanding the black hole binary formation path and dynamics in galaxy mergers is therefore mandatory. A key question poses: during a merger, will the black holes descend over time on closer orbits, form a Keplerian binary and coalesce shortly after? Here we review progress on the fate of black holes in both major and minor mergers of galaxies, either gas-free or gas-rich, in smooth and clumpy circum-nuclear discs after a galactic merger, and in circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    Safeguarding biodiversity and ecosystem services in the Little Karoo, South Africa

    Get PDF
    Global declines in biodiversity and the widespread degradation of ecosystem services have led to urgent calls to safeguard both. Responses to this urgency include calls to integrate the needs of ecosystem services and biodiversity into the design of conservation interventions. The benefits of such integration are purported to include improvements in the justification and resources available for these interventions. Nevertheless, additional costs and potential trade-offs remain poorly understood in the design of interventions that seek to conserve biodiversity and ecosystem services. We sought to investigate the synergies and trade-offs in safeguarding ecosystem services and biodiversity in South Africa’s Little Karoo. We used data on three ecosystem services—carbon storage, water recharge, and fodder provision—and data on biodiversity to examine several conservation planning scenarios. First, we investigated the amount of each ecosystem service captured incidentally by a conservation plan to meet targets for biodiversity only while minimizing opportunity costs. We then examined the costs of adding targets for ecosystem services into this conservation plan. Finally, we explored trade-offs between biodiversity and ecosystem service targets at a fixed cost. At least 30% of each ecosystem service was captured incidentally when all of biodiversity targets were met. By including data on ecosystem services, we increased the amount of services captured by at least 20% for all three services without additional costs. When biodiversity targets were reduced by 8%, an extra 40% of fodder provision and water recharge were obtained and 58% of carbon could be captured for the same cost. The opportunity cost (in terms of forgone production) of safeguarding 100% of the biodiversity targets was about US$500 million. Our results showed that with a small decrease in biodiversity target achievement, substantial gains for the conservation of ecosystem services can be achieved within our biodiversity priority areas for no extra cost.Centre of Excellence for Invasion Biolog

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200

    Supermassive Black Hole Binaries: The Search Continues

    Full text link
    Gravitationally bound supermassive black hole binaries (SBHBs) are thought to be a natural product of galactic mergers and growth of the large scale structure in the universe. They however remain observationally elusive, thus raising a question about characteristic observational signatures associated with these systems. In this conference proceeding I discuss current theoretical understanding and latest advances and prospects in observational searches for SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag

    N-body simulations of gravitational dynamics

    Full text link
    We describe the astrophysical and numerical basis of N-body simulations, both of collisional stellar systems (dense star clusters and galactic centres) and collisionless stellar dynamics (galaxies and large-scale structure). We explain and discuss the state-of-the-art algorithms used for these quite different regimes, attempt to give a fair critique, and point out possible directions of future improvement and development. We briefly touch upon the history of N-body simulations and their most important results.Comment: invited review (28 pages), to appear in European Physics Journal Plu

    Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology

    Get PDF
    Motor neuron–specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease

    Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing

    Get PDF
    Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here, we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of hertz to several kilohertz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz; in the Livingston detector, the noise reduction was a factor of 1.9 (5.8 dB). These improvements directly impact LIGO's scientific output for high-frequency sources (e.g., binary neutron star postmerger physics). The improved low-frequency sensitivity, which boosted the detector range by 15%-18% with respect to no squeezing, corresponds to an increase in the astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter-long filter cavity to each detector as part of the LIGO A+ upgrade

    Gamma-induced background in the KATRIN main spectrometer

    Get PDF
    International audienceThe KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c 2 . It investigates the kinematics of β -particles from tritium β -decay close to the endpoint of the energy spectrum. Because the KATRIN main spectrometer (MS) is located above ground, muon-induced backgrounds are of particular concern. Coincidence measurements with the MS and a scintillator-based muon detector system confirmed the model of secondary electron production by cosmic-ray muons inside the MS. Correlation measurements with the same setup showed that about 12% of secondary electrons emitted from the inner surface are induced by cosmic-ray muons, with approximately one secondary electron produced for every 17 muon crossings. However, the magnetic and electrostatic shielding of the MS is able to efficiently suppress these electrons, and we find that muons are responsible for less than 17% (90% confidence level) of the overall MS background

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    corecore