1,949 research outputs found

    Short Cuts and Long Shots: Raymond Carver's Stories and Robert Altman's Film

    Get PDF
    Asked by an interviewer about the starting-point for his stories, Raymond Carver once commented: I never start with an idea. I always see something. I start with an image, a cigarette being put out in a jar of mustard, for instance, or the remains, the wreckage of a dinner left on the table. Pop cans in the fireplace, that sort of thing. And a feeling goes with that. And that feeling seems to transport me back to that particular time and place, and the ambiance of the time. But it is the image, and the emotion that goes with that image – that's what's important. If Carver was interested in moving from the image into narrative, his stories have had a tendency to inspire their readers to translate them back into images. This was initially a critical tendency, as parallels were frequently drawn between Carver's stories and the paintings of Edward Hopper, and the paintings and sculptures of Photo Realists such as Duane Hanson, Richard Estes and Ralph Goings. But it was not only critics who looked to draw connections. In 1989, for example, Jo Ann Callis used a selection of Carver's poems to accompany her photographs in an exhibition catalogue, Objects of Reverie, while Bob Adelman has produced a book of photographs purporting to represent Carver Country

    Minding the MeV Gap: the Indirect Detection of Low Mass Dark Matter

    Full text link
    We consider the prospects for the indirect detection of low mass dark matter which couples dominantly to quarks. If the center of mass energy is below about 280 MeV, the kinematically allowed final states will be dominated by photons and neutral pions, producing striking signatures at gamma ray telescopes. In fact, an array of new instruments have been proposed, which would greatly improve sensitivity to photons in this energy range. We find that planned instruments can improve on current sensitivity to dark matter models of this type by up to a few orders of magnitude.Comment: 6 pages, 2 figures, 1 table, LaTeX. Submitted to the proceedings of CETUP*/PPC 201

    How Decoherence Affects the Probability of Slow-Roll Eternal Inflation

    Get PDF
    Slow-roll inflation can become eternal if the quantum variance of the inflaton field around its slowly rolling classical trajectory is converted into a distribution of classical spacetimes inflating at different rates, and if the variance is large enough compared to the rate of classical rolling that the probability of an increased rate of expansion is sufficiently high. Both of these criteria depend sensitively on whether and how perturbation modes of the inflaton interact and decohere. Decoherence is inevitable as a result of gravitationally-sourced interactions whose strength are proportional to the slow-roll parameters. However, the weakness of these interactions means that decoherence is typically delayed until several Hubble times after modes grow beyond the Hubble scale. We present perturbative evidence that decoherence of long-wavelength inflaton modes indeed leads to an ensemble of classical spacetimes with differing cosmological evolutions. We introduce the notion of per-branch observables---expectation values with respect to the different decohered branches of the wave function---and show that the evolution of modes on individual branches varies from branch to branch. Thus single-field slow-roll inflation fulfills the quantum-mechanical criteria required for the validity of the standard picture of eternal inflation. For a given potential, the delayed decoherence can lead to slight quantitative adjustments to the regime in which the inflaton undergoes eternal inflation.Comment: 27 pages, 3 figures; v2 reflects peer review process and has new results in Section

    Why Boltzmann Brains Don't Fluctuate Into Existence From the De Sitter Vacuum

    Get PDF
    Many modern cosmological scenarios feature large volumes of spacetime in a de Sitter vacuum phase. Such models are said to be faced with a "Boltzmann Brain problem" - the overwhelming majority of observers with fixed local conditions are random fluctuations in the de Sitter vacuum, rather than arising via thermodynamically sensible evolution from a low-entropy past. We argue that this worry can be straightforwardly avoided in the Many-Worlds (Everett) approach to quantum mechanics, as long as the underlying Hilbert space is infinite-dimensional. In that case, de Sitter settles into a truly stationary quantum vacuum state. While there would be a nonzero probability for observing Boltzmann-Brain-like fluctuations in such a state, "observation" refers to a specific kind of dynamical process that does not occur in the vacuum (which is, after all, time-independent). Observers are necessarily out-of-equilibrium physical systems, which are absent in the vacuum. Hence, the fact that projection operators corresponding to states with observers in them do not annihilate the vacuum does not imply that such observers actually come into existence. The Boltzmann Brain problem is therefore much less generic than has been supposed.Comment: Based on a talk given by SMC at, and to appear in the proceedings of, the Philosophy of Cosmology conference in Tenerife, September 201

    De Sitter Space Without Dynamical Quantum Fluctuations

    Get PDF
    We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincare recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.Comment: version accepted for publication in Foundations of Physic
    • …
    corecore