15 research outputs found

    Distinct gene expression in demyelinated white and grey matter areas of patients with multiple sclerosis

    Get PDF
    Demyelination of the central nervous system is a prominent pathological hallmark of multiple sclerosis and affects both white and grey matter. However, demyelinated white and grey matter exhibit clear pathological differences, most notably the presence or absence of inflammation and activated glial cells in white and grey matter, respectively. In order to gain more insight into the differential pathology of demyelinated white and grey matter areas, we micro-dissected neighbouring white and grey matter demyelinated areas as well as normal-appearing matter from leucocortical lesions of human post-mortem material and used these samples for RNA sequencing. Our data show that even neighbouring demyelinated white and grey matter of the same leucocortical have a distinct gene expression profile and cellular composition. We propose that, based on their distinct expression profile, pathological processes in neighbouring white and grey matter are likely different which could have implications for the efficacy of treating grey matter lesions with current anti-inflammatory-based multiple sclerosis drugs

    Correction:How the COVID-19 pandemic highlights the necessity of animal research (vol 30, pg R1014, 2020)

    Get PDF
    (Current Biology 30, R1014–R1018; September 21, 2020) As a result of an author oversight in the originally published version of this article, a number of errors were introduced in the author list and affiliations. First, the middle initials were omitted from the names of several authors. Second, the surname of Dr. van Dam was mistakenly written as “Dam.” Third, the first name of author Bernhard Englitz was misspelled as “Bernard” and the surname of author B.J.A. Pollux was misspelled as “Pullox.” Finally, Dr. Keijer's first name was abbreviated rather than written in full. These errors, as well as various errors in the author affiliations, have now been corrected online

    CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice

    Get PDF
    Neuroinflammation and microglial activation are significant processes in Alzheimer’s disease pathology. Recent genome-wide association studies have highlighted multiple immune-related genes in association with Alzheimer’s disease, and experimental data have demonstrated microglial proliferation as a significant component of the neuropathology. In this study, we tested the efficacy of the selective CSF1R inhibitor JNJ-40346527 (JNJ-527) in the P301S mouse tauopathy model. We first demonstrated the anti-proliferative effects of JNJ-527 on microglia in the ME7 prion model, and its impact on the inflammatory profile, and provided potential CNS biomarkers for clinical investigation with the compound, including pharmacokinetic/pharmacodynamics and efficacy assessment by TSPO autoradiography and CSF proteomics. Then, we showed for the first time that blockade of microglial proliferation and modification of microglial phenotype leads to an attenuation of tau-induced neurodegeneration and results in functional improvement in P301S mice. Overall, this work strongly supports the potential for inhibition of CSF1R as a target for the treatment of Alzheimer’s disease and other tau-mediated neurodegenerative diseases

    Aberrant mesenchymal differentiation of glioma stem-like cells: Implications for therapeutic targeting

    Get PDF
    Differentiation has been proposed as a therapeutic strategy for glioblastoma (GBM) in part due to observations of stem-like cells in GBM that have been shown to undergo terminal differentiation in response to growth factor withdrawal and BMP activation. However, the effects of long term exposure to serum culture conditions on glioma sphere cultures/glioma stem-like cells (GSCs) have not been examined. Here we show that GSCs retained both neurosphere formation and tumor initiation abilities after short or long term serum exposure. Under these conditions, GSCs expressed both neural lineage and stem cell markers, highlighting the aberrant pseudo-differentiation state. GSCs maintained under adherent serum cultured conditions continued to proliferate and initiate tumor formation with efficiencies similar to GSCs maintained under proliferating (neurosphere) conditions. Proneural (PN) GSCs under serum exposure showed an induction of mesenchymal (MES) gene expression signatures. Our data indicate that exposure to serum containing media result in aberrant differentiation (e.g. toward MES lineage) and activation of alternative oncogenic pathways in GSCs

    How the COVID-19 pandemic highlights the necessity of animal research

    No full text
    Recently, a petition was offered to the European Commission calling for an immediate ban on animal testing. Although a Europe-wide moratorium on the use of animals in science is not yet possible, there has been a push by the non-scientific community and politicians for a rapid transition to animal-free innovations. Although there are benefits for both animal welfare and researchers, advances on alternative methods have not progressed enough to be able to replace animal research in the foreseeable future. This trend has led first and foremost to a substantial increase in the administrative burden and hurdles required to make timely advances in research and treatments for human and animal diseases. The current COVID-19 pandemic clearly highlights how much we actually rely on animal research. COVID-19 affects several organs and systems, and the various animal-free alternatives currently available do not come close to this complexity. In this Essay, we therefore argue that the use of animals is essential for the advancement of human and veterinary health. In this Essay, Genzel et al. make the case for animal research in light of the COVID-19 pandemic

    How the COVID-19 pandemic highlights the necessity of animal research

    Get PDF
    Recently, a petition was offered to the European Commission calling for an immediate ban on animal testing. Although a Europe-wide moratorium on the use of animals in science is not yet possible, there has been a push by the non-scientific community and politicians for a rapid transition to animal-free innovations. Although there are benefits for both animal welfare and researchers, advances on alternative methods have not progressed enough to be able to replace animal research in the foreseeable future. This trend has led first and foremost to a substantial increase in the administrative burden and hurdles required to make timely advances in research and treatments for human and animal diseases. The current COVID-19 pandemic clearly highlights how much we actually rely on animal research. COVID-19 affects several organs and systems, and the various animal-free alternatives currently available do not come close to this complexity. In this Essay, we therefore argue that the use of animals is essential for the advancement of human and veterinary health

    Transcriptomic analysis of purified human cortical microglia reveals age-associated changes

    Get PDF
    Microglia are essential for CNS homeostasis and innate neuroimmune function, and play important roles in neurodegeneration and brain aging. Here we present gene expression profiles of purified microglia isolated at autopsy from the parietal cortex of 39 human subjects with intact cognition. Overall, genes expressed by human microglia were similar to those in mouse, including established microglial genes CX3CR1, P2RY12 and ITGAM (CD11B). However, a number of immune genes, not identified as part of the mouse microglial signature, were abundantly expressed in human microglia, including TLR, F-c gamma and SIGLEC receptors, as well as TAL1 and IFI16, regulators of proliferation and cell cycle. Age-associated changes in human microglia were enriched for genes involved in cell adhesion, axonal guidance, cell surface receptor expression and actin (dis)assembly. Limited overlap was observed in microglial genes regulated during aging between mice and humans, indicating that human and mouse microglia age differently

    Central nervous system myeloid cells as drug targets: current status and translational challenges

    No full text
    Myeloid cells of the central nervous system (CNS), which include parenchymal microglia, macrophages at CNS interfaces and monocytes recruited from the circulation during disease, are increasingly being recognized as targets for therapeutic intervention in neurological and psychiatric diseases. The origin of these cells in the immune system distinguishes them from ectodermal neurons and other glia and endows them with potential drug targets distinct from classical CNS target groups. However, despite the identification of several promising therapeutic approaches and molecular targets, no agents directly targeting these cells are currently available. Here, we assess strategies for targeting CNS myeloid cells and address key issues associated with their translation into the clinic
    corecore