1,239 research outputs found
Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain
The aim of this study was to evaluate glucose-bearing niosomes as a brain targeted delivery system for the vasoactive intestinal peptide (VIP). To this end, VIP/125I-VIP-loaded glucose-bearing niosomes were intravenously injected to mice. Brain uptake was determined by measuring the radioactivity of 125I-labeled VIP using gamma-counting, after intravenous administration of VIP in solution or encapsulated in glucose-bearing niosomes or in control niosomes. VIP integrity was assessed by reversed-phase HPLC analysis of brain extracts. Distribution of 125I-VIP derived radioactivity was examined from serial brain slices. HPLC analysis confirmed the presence of intact VIP in brain after administration of VIP-loaded niosomes, but not after administration of VIP solution. Encapsulation within glucose-bearing niosomes mainly allowed a significantly higher VIP brain uptake compared to control niosomes (up to 86%, 5min after treatment). Brain distribution of intact VIP after injection of glucose-bearing niosomes, indicated that radioactivity was preferentially located in the posterior and the anterior parts of the brain, whereas it was homogeneously distributed in the whole brain after the administration of control vesicles. In conclusion, this novel vesicular formulation of VIP delivers intact VIP to particular brain regions in mice. Glucose-bearing vesicles might be therefore a novel tool to deliver drugs across the blood-brain barrier (BBB)
A Simple & Convenient Solid Phase Synthesis of Bacterial Origin Octapeptide Sequence, Glu-Asp-Gly-Asn-Lys-Pro-Gly-Lys-OH
The repeating octapeptide sequence, Glu-Asp-Gly-Asn-Lys-Pro-Gly-Lys-OH derived from the glycoprotein found in Staphylococcus aureus cell wall is assembled by simple solid phase peptide synthesis methodology using a base labile linker
Novel Bradykinin Analogues Modified in the N-Terminal Part of the Molecule with a Variety of Acyl Substituents
In the current work we present some pharmacological characteristics of ten new analogues of bradykinin (Arg–Pro–Pro–Gly–Phe–Ser–Pro–Phe–Arg) modified in the N-terminal part of the molecule with a variety of acyl substituents. Of the many acylating agents used previously with B2 receptor antagonists, the following residues were chosen: 1-adamantaneacetic acid (Aaa), 1-adamantanecarboxylic acid (Aca), 4-tert-butylbenzoic acid (t-Bba), 4-aminobenzoic acid (Aba), 12-aminododecanoic acid (Adc), succinic acid (Sua), 4-hydroxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 3-(4-hydroxyphenyl)propionic acid and 6-hydroxy-2-naphthoic acid. Biological activity of the compounds was assessed in the in vivo rat blood pressure test and the in vitro rat uterus test. Surprisingly, N-terminal substitution of the bradykinin peptide chain itself with aforementioned groups resulted in antagonists of bradykinin in the pressor test and suppressed agonistic potency in the uterotonic test. These interesting findings need further studies as they can be helpful for designing more potent B2 receptor blockers
Incomplete posttranslational prohormone modifications in hyperactive neuroendocrine cells
Contains fulltext :
76028.pdf (publisher's version ) (Open Access)8 p
Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein
Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhe-sion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized poly- mers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate-forming adhesives, mechanically improved nano- and micro-composite adhesive hydrogels, as well as smart and self-healing materials. Finally, we review the applications of catechol-functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings
- …