45 research outputs found

    Self-dual cyclic codes over finite chain rings

    Full text link
    Let RR be a finite commutative chain ring with unique maximal ideal ⟨γ⟩\langle \gamma\rangle, and let nn be a positive integer coprime with the characteristic of R/⟨γ⟩R/\langle \gamma\rangle. In this paper, the algebraic structure of cyclic codes of length nn over RR is investigated. Some new necessary and sufficient conditions for the existence of nontrivial self-dual cyclic codes are provided. An enumeration formula for the self-dual cyclic codes is also studied.Comment: 15 page

    Application of Constacyclic codes to Quantum MDS Codes

    Full text link
    Quantum maximal-distance-separable (MDS) codes form an important class of quantum codes. To get qq-ary quantum MDS codes, it suffices to find linear MDS codes CC over Fq2\mathbb{F}_{q^2} satisfying CβŠ₯HβŠ†CC^{\perp_H}\subseteq C by the Hermitian construction and the quantum Singleton bound. If CβŠ₯HβŠ†CC^{\perp_{H}}\subseteq C, we say that CC is a dual-containing code. Many new quantum MDS codes with relatively large minimum distance have been produced by constructing dual-containing constacyclic MDS codes (see \cite{Guardia11}, \cite{Kai13}, \cite{Kai14}). These works motivate us to make a careful study on the existence condition for nontrivial dual-containing constacyclic codes. This would help us to avoid unnecessary attempts and provide effective ideas in order to construct dual-containing codes. Several classes of dual-containing MDS constacyclic codes are constructed and their parameters are computed. Consequently, new quantum MDS codes are derived from these parameters. The quantum MDS codes exhibited here have parameters better than the ones available in the literature.Comment: 16 page

    Constacyclic Codes over Finite Fields

    Get PDF
    An equivalence relation called isometry is introduced to classify constacyclic codes over a finite field; the polynomial generators of constacyclic codes of length β„“tps\ell^tp^s are characterized, where pp is the characteristic of the finite field and β„“\ell is a prime different from pp
    corecore