144 research outputs found

    Zero-bias anomaly in two-dimensional electron layers and multiwall nanotubes

    Get PDF
    The zero-bias anomaly in the dependence of the tunneling density of states ν(ϵ)\nu (\epsilon) on the energy ϵ\epsilon of the tunneling particle for two- and one-dimensional multilayered structures is studied. We show that for a ballistic two-dimensional (2D) system the first order interaction correction to DOS due to the plasmon excitations studied by Khveshchenko and Reizer is partly compensated by the contribution of electron-hole pairs which is twice as small and has the opposite sign. For multilayered systems the total correction to the density of states near the Fermi energy has the form δν/ν0=max(ϵ,ϵ)/4ϵF\delta \nu/\nu_0 = {max} (| \epsilon |, \epsilon^*)/4\epsilon_F, where ϵ\epsilon^* is the plasmon energy gap of the multilayered 2D system. In the case of one-dimensional conductors we study multiwall nanotubes with the elastic mean free path exceeding the radius of the nanotube. The dependence of the tunneling density of states energy, temperature and on the number of shells is found.Comment: 8 pages, 3 figure

    Quantized Adiabatic Charge Transport in a Carbon Nanotube

    Full text link
    The coupling of a metallic Carbon nanotube to a surface acoustic wave (SAW) is proposed as a vehicle to realize quantized adiabatic charge transport in a Luttinger liquid system. We demonstrate that electron backscattering by a periodic SAW potential, which results in miniband formation, can be achieved at energies near the Fermi level. Electron interaction, treated in a Luttinger liquid framework, is shown to enhance minigaps and thereby improve current quantization. Quantized SAW induced current, as a function of electron density, changes sign at half-filling.Comment: 5 pages, 2 figure

    Paraconductivity in Carbon Nanotubes

    Full text link
    We report the calculation of paraconductivity in carbon nanotubes above the superconducting transition temperature. The complex behavior of paraconductivity depending upon the tube radius, temperature and magnetic field strength is analyzed. The results are qualitatively compared with recent experimental observations in carbon nanotubes of an inherent transition to the superconducting state and pronounced thermodynamic fluctuations above TcT_{c}. The application of our results to single-wall and multi-wall carbon nanotubes as well as ropes of nanotubes is discussed.Comment: 7 pages, 1 figur

    Experimental Evidence for Resonant-Tunneling in a Luttinger-Liquid

    Full text link
    We have measured the low temperature conductance of a one-dimensional island embedded in a single mode quantum wire. The quantum wire is fabricated using the cleaved edge overgrowth technique and the tunneling is through a single state of the island. Our results show that while the resonance line shape fits the derivative of the Fermi function the intrinsic line width decreases in a power law fashion as the temperature is reduced. This behavior agrees quantitatively with Furusaki's model for resonant tunneling in a Luttinger-liquid.Comment: 3 pages, 5 figures, corrected typo

    Zero-bias anomaly in disordered wires

    Full text link
    We calculate the low-energy tunneling density of states ν(ϵ,T)\nu(\epsilon, T) of an NN-channel disordered wire, taking into account the electron-electron interaction non-perturbatively. The finite scattering rate 1/τ1/\tau results in a crossover from the Luttinger liquid behavior at higher energies, νϵα\nu\propto\epsilon^\alpha, to the exponential dependence ν(ϵ,T=0)exp(ϵ/ϵ)\nu (\epsilon, T=0)\propto \exp{(-\epsilon^*/\epsilon)} at low energies, where ϵ1/(Nτ)\epsilon^*\propto 1/(N \tau). At finite temperature TT, the tunneling density of states depends on the energy through the dimensionless variable ϵ/ϵT\epsilon/\sqrt{\epsilon^* T}. At the Fermi level ν(ϵ=0,T)exp(ϵ/T)\nu(\epsilon=0,T) \propto \exp (-\sqrt{\epsilon^*/T}).Comment: 5 pages, 1 figur

    Minimum Conductivity and Evidence for Phase Transitions in Ultra-clean Bilayer Graphene

    Get PDF
    Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly susceptible to electronic interactions, and expected to undergo a phase transition into a state with spontaneous broken symmetries. By systematically investigating a large number of singly- and doubly-gated bilayer graphene (BLG) devices, we show that an insulating state appears only in devices with high mobility and low extrinsic doping. This insulating state has an associated transition temperature Tc~5K and an energy gap of ~3 meV, thus strongly suggesting a gapped broken symmetry state that is destroyed by very weak disorder. The transition to the intrinsic broken symmetry state can be tuned by disorder, out-of-plane electric field, or carrier density

    Spin-orbit coupling in interacting quasi-one-dimensional electron systems

    Full text link
    We present a new model for the study of spin-orbit coupling in interacting quasi-one-dimensional systems and solve it exactly to find the spectral properties of such systems. We show that the combination of spin-orbit coupling and electron-electron interactions results in: the replacement of separate spin and charge excitations with two new kinds of bosonic mixed-spin-charge excitation, and a characteristic modification of the spectral function and single-particle density of states. Our results show how manipulation of the spin-orbit coupling, with external electric fields, can be used for the experimental determination of microscopic interaction parameters in quantum wires.Comment: 5 pages including 4 figures; RevTeX; to appear in Phys.Rev.Let

    Superconductivity in Ropes of Single-Walled Carbon Nanotubes

    Full text link
    We report measurements on ropes of Single Walled Carbon Nanotubes (SWNT) in low-resistance contact to non-superconducting (normal) metallic pads, at low voltage and at temperatures down to 70 mK. In one sample, we find a two order of magnitude resistance drop below 0.55 K, which is destroyed by a magnetic field of the order of 1T, or by a d.c. current greater than 2.5 microA. These features strongly suggest the existence of superconductivity in ropes of SWNT.Comment: Accepted for publication in Phys. Rev. Let

    Conductance of Distorted Carbon Nanotubes

    Full text link
    We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant σ\sigma-π\pi hybridization resulting from the increased curvature produced by bending. Our calculations of the contact resistance show that the large contact resistances observed for SWNTs are likely due to the weak coupling of the NT to the metal in side bonded NT-metal configurations.Comment: 5 pages RevTeX including 4 figures, submitted to PR
    corecore