290 research outputs found

    Gate Voltage Controllable Non-Equilibrium and Non-Ohmic Behavior in Suspended Carbon Nanotubes

    Get PDF
    In this work, we measure the electrical conductance and temperature of individual, suspended quasi-metallic single-walled carbon nanotubes under high voltage biases using Raman spectroscopy, while varying the doping conditions with an applied gate voltage. By applying a gate voltage, the high-bias conductance can be switched dramatically between linear (Ohmic) behavior and nonlinear behavior exhibiting negative differential conductance (NDC). Phonon populations are observed to be in thermal equilibrium under Ohmic conditions but switch to nonequilibrium under NDC conditions. A typical Landauer transport model assuming zero bandgap is found to be inadequate to describe the experimental data. A more detailed model is presented, which incorporates the doping dependence in order to fit this data

    Localization, Coulomb interactions and electrical heating in single-wall carbon nanotubes/polymer composites

    Full text link
    Low field and high field transport properties of carbon nanotubes/polymer composites are investigated for different tube fractions. Above the percolation threshold f_c=0.33%, transport is due to hopping of localized charge carriers with a localization length xi=10-30 nm. Coulomb interactions associated with a soft gap Delta_CG=2.5 meV are present at low temperature close to f_c. We argue that it originates from the Coulomb charging energy effect which is partly screened by adjacent bundles. The high field conductivity is described within an electrical heating scheme. All the results suggest that using composites close to the percolation threshold may be a way to access intrinsic properties of the nanotubes by experiments at a macroscopic scale.Comment: 4 pages, 5 figures, Submitted to Phys. Rev.

    Electric Switching of the Charge-Density-Wave and Normal Metallic Phases in Tantalum Disulfide Thin-Film Devices

    Full text link
    We report on switching among three charge-density-wave phases - commensurate, nearly commensurate, incommensurate - and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane electric field. The electric switching among all phases has been achieved over a wide temperature range, from 77 K to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 K to 600 K. Analysis of the experimental data and calculations of heat dissipation suggest that Joule heating plays a dominant role in the electric-field induced transitions in the tested 1T-TaS2 devices on Si/SiO2 substrates. The possibility of electrical switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in materials.Comment: 32 pages, 7 figure

    Spatially-Resolved Temperature Measurements of Electrically-Heated Carbon Nanotubes

    Get PDF
    Spatially-resolved Raman spectra of individual pristine suspended carbon nanotubes are observed under electrical heating. The Raman G+ and G- bands show unequal temperature profiles. The preferential heating is more pronounced in short nanotubes (2 um) than in long nanotubes (5 um). These results are understood in terms of the decay and thermalization of non-equilibrium phonons, revealing the mechanism of thermal transport in these devices. The measurements also enable a direct estimate of thermal contact resistances and the spatial variation of thermal conductivity.Comment: To appear in Phys. Rev. Let

    Zero-bias anomaly in two-dimensional electron layers and multiwall nanotubes

    Get PDF
    The zero-bias anomaly in the dependence of the tunneling density of states ν(ϵ)\nu (\epsilon) on the energy ϵ\epsilon of the tunneling particle for two- and one-dimensional multilayered structures is studied. We show that for a ballistic two-dimensional (2D) system the first order interaction correction to DOS due to the plasmon excitations studied by Khveshchenko and Reizer is partly compensated by the contribution of electron-hole pairs which is twice as small and has the opposite sign. For multilayered systems the total correction to the density of states near the Fermi energy has the form δν/ν0=max(∣ϵ∣,ϵ∗)/4ϵF\delta \nu/\nu_0 = {max} (| \epsilon |, \epsilon^*)/4\epsilon_F, where ϵ∗\epsilon^* is the plasmon energy gap of the multilayered 2D system. In the case of one-dimensional conductors we study multiwall nanotubes with the elastic mean free path exceeding the radius of the nanotube. The dependence of the tunneling density of states energy, temperature and on the number of shells is found.Comment: 8 pages, 3 figure

    Minimum Conductivity and Evidence for Phase Transitions in Ultra-clean Bilayer Graphene

    Get PDF
    Bilayer graphene (BLG) at the charge neutrality point (CNP) is strongly susceptible to electronic interactions, and expected to undergo a phase transition into a state with spontaneous broken symmetries. By systematically investigating a large number of singly- and doubly-gated bilayer graphene (BLG) devices, we show that an insulating state appears only in devices with high mobility and low extrinsic doping. This insulating state has an associated transition temperature Tc~5K and an energy gap of ~3 meV, thus strongly suggesting a gapped broken symmetry state that is destroyed by very weak disorder. The transition to the intrinsic broken symmetry state can be tuned by disorder, out-of-plane electric field, or carrier density

    W=0 Pairing in (N,N)(N,N) Carbon Nanotubes away from Half Filling

    Full text link
    We use the Hubbard Hamiltonian HH on the honeycomb lattice to represent the valence bands of carbon single-wall (N,N)(N,N) nanotubes. A detailed symmetry analysis shows that the model allows W=0 pairs which we define as two-body singlet eigenstates of HH with vanishing on-site repulsion. By means of a non-perturbative canonical transformation we calculate the effective interaction between the electrons of a W=0 pair added to the interacting ground state. We show that the dressed W=0 pair is a bound state for resonable parameter values away from half filling. Exact diagonalization results for the (1,1) nanotube confirm the expectations. For (N,N)(N,N) nanotubes of length ll, the binding energy of the pair depends strongly on the filling and decreases towards a small but nonzero value as l→∞l \to \infty. We observe the existence of an optimal doping when the number of electrons per C atom is in the range 1.2÷\div1.3, and the binding energy is of the order of 0.1 ÷\div 1 meV.Comment: 16 pages, 6 figure

    Magnetoresistance Effect in Spin-Polarized Junctions of Ferromagnetically Contacting Multiple Conductive Paths: Applications to Atomic Wires and Carbon Nanotubes

    Full text link
    For spin-polarized junctions of ferromagnetically contacting multiple conductive paths, such as ferromagnet (FM)/atomic wires/FM and FM/carbon nanotubes/FM junctions, we theoretically investigate spin-dependent transport to elucidate the intrinsic relation between the number of paths and conduction, and to enhance the magnetoresistance (MR) ratio. When many paths are randomly located between the two FMs, electronic wave interference between the FMs appears, and then the MR ratio increases with increasing number of paths. Furthermore, at each number of paths, the MR ratio for carbon nanotubes becomes larger than that for atomic wires, reflecting the characteristic shape of points in contact with the FM.Comment: 7 pages, 3 figures, accepted for publication in Phys. Rev.
    • …
    corecore