12,970 research outputs found

    Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3

    Get PDF
    We present a detailed analysis of the far-infrared (-IR) properties of the bright, lensed, z = 2.3, submillimetre-selected galaxy (SMG), SMM J2135-0102 (hereafter SMM J2135), using new observations with Herschel, SCUBA-2 and the Very Large Array (VLA). These data allow us to constrain the galaxy's spectral energy distribution (SED) and show that it has an intrinsic rest-frame 8-1000-ÎŒm luminosity, L_(bol), of (2.3±0.2) × 10^(12) L_☉ and a likely star-formation rate (SFR) of ~400 yr-1. The galaxy sits on the far-IR/radio correlation for far-IR-selected galaxies. At ≳70 ÎŒm, the SED can be described adequately by dust components with dust temperatures, T_d ~ 30 and 60 k. Using SPIRE's Fourier- transform spectrometer (FTS) we report a detection of the [C ii] 158 ÎŒm cooling line. If the [C ii], CO and far-IR continuum arise in photo-dissociation regions (PDRs), we derive a characteristic gas density, n ~ 10^3 cm^(-3), and a far-ultraviolet (-UV) radiation field, G_0, 10^(3)× stronger than the Milky Way. L_[CII]/L_(bol) is significantly higher than in local ultra-luminous IR galaxies (ULIRGs) but similar to the values found in local star-forming galaxies and starburst nuclei. This is consistent with SMM J2135 being powered by starburst clumps distributed across ~2 kpc, evidence that SMGs are not simply scaled-up ULIRGs. Our results show that SPIRE's FTS has the ability to measure the redshifts of distant, obscured galaxies via the blind detection of atomic cooling lines, but it will not be competitive with ground-based CO-line searches. It will, however, allow detailed study of the integrated properties of high-redshift galaxies, as well as the chemistry of their interstellar medium (ISM), once more suitably bright candidates have been found

    The Phase Diagram and Spectrum of Gauge-Fixed Abelian Lattice Gauge Theory

    Get PDF
    We consider a lattice discretization of a covariantly gauge-fixed abelian gauge theory. The gauge fixing is part of the action defining the theory, and we study the phase diagram in detail. As there is no BRST symmetry on the lattice, counterterms are needed, and we construct those explicitly. We show that the proper adjustment of these counterterms drives the theory to a new type of phase transition, at which we recover a continuum theory of (free) photons. We present both numerical and (one-loop) perturbative results, and show that they are in good agreement near this phase transition. Since perturbation theory plays an important role, it is important to choose a discretization of the gauge-fixing action such that lattice perturbation theory is valid. Indeed, we find numerical evidence that lattice actions not satisfying this requirement do not lead to the desired continuum limit. While we do not consider fermions here, we argue that our results, in combination with previous work, provide very strong evidence that this new phase transition can be used to define abelian lattice chiral gauge theories.Comment: 42 pages, 30 figure

    Millimetre/submillimetre-wave emission line searches for high-redshift galaxies

    Get PDF
    The redshifted spectral line radiation emitted from both atomic fine-structure and molecular rotational transitions in the interstellar medium (ISM) of high-redshift galaxies can be detected in the centimetre, millimetre and submillimetre wavebands. Here we predict the counts of galaxies detectable in an array of molecular and atomic lines. This calculation requires a reasonable knowledge of both the surface density of these galaxies on the sky, and the physical conditions in their ISM. The surface density is constrained using the results of submillimetre-wave continuum surveys. Follow-up OVRO Millimeter Array observations of two of the galaxies detected in the dust continuum have provided direct measurements of CO rotational line emission at redshifts of 2.56 and 2.81. Based on these direct high-redshift observations and on models of the ISM that are constrained by observations of low-redshift ultraluminous infrared galaxies, we predict the surface density of line-emitting galaxies as a function of line flux density and observing frequency. We incorporate the sensitivities and mapping speeds of existing and future millimetre/submillimetre-wave telescopes and spectrographs, and so assess the prospects for blank-field surveys to detect this line emission from gas-rich high-redshift galaxies.Comment: 13 pages, 12 figures, to appear in MNRAS. Final proof versio

    Composite infrared bolometers with Si_3N_4 micromesh absorbers

    Get PDF
    We report the design and performance of 300-mK composite bolometers that use micromesh absorbers and support structures patterned from thin films of low-stress silicon nitride. The small geometrical filling factor of the micromesh absorber provides 20× reduction in heat capacity and cosmic ray cross section relative to a solid absorber with no loss in IR-absorption efficiency. The support structure is mechanically robust and has a thermal conductance, G < 2 × 10^(−11) W/K, which is four times smaller than previously achieved at 300 mK. The temperature rise of the bolometer is measured with a neutron transmutation doped germanium thermistor attached to the absorbing mesh. The dispersion in electrical and thermal parameters of a sample of 12 bolometers optimized for the Sunyaev–Zel’dovich Infrared Experiment is ±7% in R (T), ±5% in optical efficiency, and ±4% in G

    Heat Capacity of Neutron Transmutation Doped Ge Type 18

    Get PDF
    We present measurements of the heat capacity of neutron transmutation doped (NTD) Ge temperature sensors from 100–300 mK. The NTD Ge sensor studied consists of a 30ÎŒm×100ÎŒm×250ÎŒm block of NTD Ge type 18 with the natural isotopic abundance, a doping of n = 5.6×10^(16) cm^(−3) and ion implanted and metallized contact pads. Each sensor was mounted on a freestanding silicon nitride (Si‐N) pad supported by Si‐N legs each with a cross section in the range 5–10 ÎŒm^2. Two of the Si‐N legs were metallized for electrical readout of the NTD Ge sensor. The measured heat capacity of the NTD Ge sensor, which includes the metalization and Si‐N pad, when fit to power law C = C_0T^Îł yields C_0 = 4.3pJ/K^Îł and γ = 1.6. The thermal conductance, GSi‐N, of the Si‐N support legs was measured over a larger temperature range 80–800 mK. We find G_(si‐N) at temperatures >200 mK of all 4 samples is at or below the 1D or quantum of thermal conductance limit

    The far-infrared/submillimeter properties of galaxies located behind the Bullet cluster

    Get PDF
    The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100–500 ÎŒm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 ÎŒm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 ÎŒm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales

    The Herschel Lensing Survey (HLS): Overview

    Get PDF
    The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of ∌40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate limit on our ability to probe the Universe with Herschel. Here we present an overview of our survey and a summary of the major results from our science demonstration phase (SDP) observations of the Bullet cluster (z = 0.297). The SDP data are rich and allow us to study not only the background high-redshift galaxies (e.g., strongly lensed and distorted galaxies at z = 2.8 and 3.2) but also the properties of cluster-member galaxies. Our preliminary analysis shows a great diversity of far-infrared/submillimeter spectral energy distributions (SEDs), indicating that we have much to learn with Herschel about the properties of galaxy SEDs. We have also detected the Sunyaev-Zel’dovich (SZ) effect increment with the SPIRE data. The success of this SDP program demonstrates the great potential of the Herschel Lensing Survey to produce exciting results in a variety of science areas

    Strongly coupled U(1) lattice gauge theory as a microscopic model of Yukawa theory

    Full text link
    Dynamical chiral symmetry breaking in a strongly coupled U(1) lattice gauge model with charged fermions and scalar is investigated by numerical simulation. Several composite neutral states are observed, in particular a massive fermion. In the vicinity of the tricritical point of this model we study the effective Yukawa coupling between this fermion and the Goldstone boson. The perturbative triviality bound of Yukawa models is nearly saturated. The theory is quite similar to strongly coupled Yukawa models for sufficiently large coupling except the occurrence of an additional state -- a gauge ball of mass about half the mass of the fermion.Comment: 4 page

    Neutrinos and Future Concordance Cosmologies

    Full text link
    We review the free parameters in the concordance cosmology, and those which might be added to this set as the quality of astrophysical data improves. Most concordance parameters encode information about otherwise unexplored aspects of high energy physics, up to the GUT scale via the "inflationary sector," and possibly even the Planck scale in the case of dark energy. We explain how neutrino properties may be constrained by future astrophysical measurements. Conversely, future neutrino physics experiments which directly measure these parameters will remove uncertainty from fits to astrophysical data, and improve our ability to determine the global properties of our universe.Comment: Proceedings of paper given at Neutrino 2008 meeting (by RE
    • 

    corecore