438 research outputs found
Computable randomness is about more than probabilities
We introduce a notion of computable randomness for infinite sequences that
generalises the classical version in two important ways. First, our definition
of computable randomness is associated with imprecise probability models, in
the sense that we consider lower expectations (or sets of probabilities)
instead of classical 'precise' probabilities. Secondly, instead of binary
sequences, we consider sequences whose elements take values in some finite
sample space. Interestingly, we find that every sequence is computably random
with respect to at least one lower expectation, and that lower expectations
that are more informative have fewer computably random sequences. This leads to
the intriguing question whether every sequence is computably random with
respect to a unique most informative lower expectation. We study this question
in some detail and provide a partial answer
Determination of the Parity of the Neutral Pion via the Four-Electron Decay
We present a new determination of the parity of the neutral pion via the
double Dalitz decay pi^0 -> e+ e- e+ e-. Our sample, which consists of 30511
candidate decays, was collected from K_L -> pi0 pi0 pi0 decays in flight at the
KTeV-E799 experiment at Fermi National Accelerator Laboratory. We confirm the
negative pi^0 parity, and place a limit on scalar contributions to the pi^0 ->
e+ e- e+ e- decay amplitude of less than 3.3% assuming CPT conservation. The
pi^0 gamma* gamma* form factor is well described by a momentum-dependent model
with a slope parameter fit to the final state phase space distribution.
Additionally, we have measured the branching ratio of this mode to be B(pi^0 ->
e+ e- e+ e-) = (3.26 +- 0.18) x 10^(-5).Comment: 5 pages, 4 figures. Typographical error in radiative branching ratio
(Eq. 6) correcte
Search for the Rare Decays KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-
The KTeV E799 experiment has conducted a search for the rare decays
KL->pi0pi0mu+mu- and KL->pi0pi0X0->pi0pi0mu+mu-, where the X0 is a possible new
neutral boson that was reported by the HyperCP experiment with a mass of (214.3
pm 0.5) MeV/c^{2}. We find no evidence for either decay. We obtain upper limits
of Br(KL->pi0pi0X0->pi0pi0mu+mu-) pi0pi0mu+mu-) <
9.2 x 10^{-11} at the 90% confidence level. This result rules out the
pseudoscalar X0 as an explanation of the HyperCP result under the scenario that
the \bar{d}sX0 coupling is completely real
Search for the Rare Decay K_{L}\to\pi^{0}\pi^{0}\gamma
The KTeV E799 experiment has conducted a search for the rare decay
via the topology
(where ). Due to Bose
statistics of the pair and the real nature of the photon, the
decay is restricted to proceed at lowest order
by the CP conserving direct emission (DE) of an E2 electric quadrupole photon.
The rate of this decay is interesting theoretically since chiral perturbation
theory predicts that this process vanishes at level . Therefore, this
mode probes chiral perturbation theory at . In this paper we report a
determination of an upper limit of (90% CL) for
. This is approximately a factor of 20 lower than
previous results.Comment: six pages and six figures in the submission. Reformatted for Physics
Review
Dispersive analysis of K_{L mu3} and K_{L e3} scalar and vector form factors using KTeV data
Using the published KTeV samples of K_L --> pi^{\pm} e^{\mp} nu and K_L -->
pi^{\pm} mu^{\mp} nu decays [1], we perform a reanalysis of the scalar and
vector form factors based on the dispersive parameterization [2,3]. We obtain
phase space integrals I^e_K = 0.15446 \pm 0.00025 and I^{mu}_K = 0.10219 \pm
0.00025. For the scalar form factor parameterization, the only free parameter
is the normalized form factor value at the Callan-Treiman point (C); our best
fit results in ln C = 0.1915 \pm 0.0122. We also study the sensitivity of C to
different parametrizations of the vector form factor. The results for the phase
space integrals and C are then used to make tests of the Standard Model.
Finally, we compare our results with lattice QCD calculations of F_K/F_pi and
f_+(0).Comment: 9 pages, 3 figures, to be published in PR
Computable randomness is about more than probabilities
We introduce a notion of computable randomness for infinite sequences that generalises the classical version in two important ways. First, our definition of computable randomness is associated with imprecise probability models, in the sense that we consider lower expectations (or sets of probabilities) instead of classical 'precise' probabilities. Secondly, instead of binary sequences, we consider sequences whose elements take values in some finite sample space. Interestingly, we find that every sequence is computably random with respect to at least one lower expectation, and that lower expectations that are more informative have fewer computably random sequences. This leads to the intriguing question whether every sequence is computably random with respect to a unique most informative lower expectation. We study this question in some detail and provide a partial answer
Planck 2013 results. XXII. Constraints on inflation
We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Measurement of the Decay KL -> pi0 e+ e- gamma
We report on a new measurement of the branching ratio B(KL -> pi0 e+ e-
gamma) using the KTeV detector. This analysis uses the full KTeV data set
collected from 1997 to 2000. We reconstruct 139 events over a background of 14,
which results in B(KL -> pi0 e+ e- gamma) = (1.62 +/- 0.14 (stat) +/- 0.09
(syst)) x 10^{-8}. This result supersedes the earlier KTeV measurement of this
branching ratio.Comment: 6 pages, 7 figures, Submitted to Phys. Rev.
- …