325 research outputs found

    Learn to Speak Japanese in Three Excruciating Steps

    Get PDF
    Gary, a middle-aged Midwesterner, lost his first wife and the mother of his only son to a terminal illness ten years ago. His son, Brent, has been living in Japan for five years and barely speaks to his father. After Brent receives a life-threatening diagnosis of his own, Gary travels half-way across the globe to be with his son and attempt to repair their tattered relationship

    A Study of the Impact of Acquisition Reforms on Pre-Award Solicitations

    Get PDF
    The purpose of this study was to develop insights into the impact acquisition reforms have had on pre-award solicitations. The changing nature of the marketplace and the reduction in the size of the defense budget has brought about a series of sweeping acquisition changes that include the Federal Acquisition Streamlining Act (FASA) and Lighting Bolt initiatives. A qualitative analysis of six cases and interviews of people actively involved in the solicitation process revealed acquisition reform benefits: increased performance, cost savings, and reduced acquisition time. These benefits were achieved through the use of performance-based contracting and adaptation of several commercial business practices. Performance-based contracting was not found to affect the level of competition for solicitations

    Characterisation of Herschel-SPIRE flight model optical performances

    Get PDF
    The Spectral and Photometric Imaging Receiver (SPIRE) is one of three scientific instruments on ESA's Herschel Space Observatory. This long wavelength instrument covers 200 to 670μm with a three band photometric camera and a two band imaging Fourier Transform Spectrometer (IFTS). Following first results reported in a previous paper, we discuss the in-band optical performances of the flight model as measured extensively during several dedicated test campaigns. Complementary to the experimentally probed spectral characteristics of the instrument detailed in an accompanying paper (see L.D. Spencer et al., in these proceedings), attention is focused here on a set of standard but key tests aimed at measuring the spatial response of the Photometer and Spectrometer end-to-end optical chain, including detector. Effects of defocus as well as source size extent, in-band wavelength, and polarization are also investigated over respective Photometer and Spectrometer field-of-views. Comparison with optical modelling, based on instrument design knowledge and some of the internal component measured characteristics, is performed. Beyond the specific characterisation of each effect, this allows estimating in each band where optical behaviour and detector behaviour respectively dominates and also reconstructing some of the contributors to the instrument throughput. Based on this analysis, retrieved optical performances are finally assessed against the related science-driven instrument requirements

    A complete view of galaxy evolution: panchromatic luminosity functions and the generation of metals

    Get PDF
    When and how did galaxies form and their metals accumulate? Over the last decade, this has moved from an archeological question to a live investigation: there is now a broad picture of the evolution of galaxies in dark matter halos: their masses, stars, metals and supermassive blackholes. Galaxies have been found and studied in which these formation processes are taking place most vigorously, all the way back in cosmic time to when the intergalactic medium (IGM) was still largely neutral. However, the details of how and why the interstellar medium (ISM) in distant galaxies cools, is processed, recycled and enriched in metals by stars, and fuels active galactic nuclei (AGNs) remain uncertain. In particular, the cooling of gas to fuel star formation, and the chemistry and physics of the most intensely active regions is hidden from view at optical wavelengths, but can be seen and diagnosed at mid- & far-infrared (IR) wavelengths. Rest-frame IR observations are important first to identify the most luminous, interesting and important galaxies, secondly to quantify accurately their total luminosity, and finally to use spectroscopy to trace the conditions in the molecular and atomic gas out of which stars form. In order to map out these processes over the full range of environments and large-scale structures found in the universe - from the densest clusters of galaxies to the emptiest voids - we require tools for deep, large area surveys, of millions of galaxies out to z~5, and for detailed follow-up spectroscopy. The necessary tools can be realized technically. Here, we outline the requirements for gathering the crucial information to build, validate and challenge models of galaxy evolution.Comment: A whitepaper submitted on 15th February 2009 in response to the call from the Astro2010 panel: astro2010.org; uploaded as an 8-page pdf fil

    Silicon nitride micromesh bolometer arrays for SPIRE

    Get PDF
    We are developing arrays of bolometers based on silicon nitride micromesh absorbers for the Spectral & Photometric Imaging Receiver (SPIRE) on the Far Infra-Red and Submillimeter Space Telescope (FIRST). The bolometers are coupled to a close-packed array of 1 f(lambda) feedhorns which views the primary mirror through a cooled aperture stop. Feedhorn-coupled bolometers minimize the detector area and throughput and have good optical efficiency. A 1 f(lambda) feedhorn array provides, higher mapping speed than a 2 f(lambda) feedhorn array and reduces the number of jitters required to produce a fully sampled map, but at the cost of more detectors. Individual silicon nitride micromesh bolometers are already able to meet the performance requirements of SPIRE. In parallel we are developing transition-edge detectors read out by SQUID current amplifier. The relatively large cooling power available at 300 mK enables the array to be coupled to a cold SQUID multiplexer, creating a monolithic fully multiplexed array and making large format arrays possible for SPIRE

    A broadband millimeter-wave spectrometer Z-Spec: sensitivity and ULIRGs

    Get PDF
    Z-Spec is a cryogenic, broadband, millimeter-wave grating spectrometer. It is capable of obtaining many spectral lines simultaneously because of its unprecedented broad bandwidth (185-305GHz). The bandpass covers the 1mm atmospheric transmission window with a resolving power of 250-400. Z-Spec uses 160 silicon nitride micromesh bolometers cooled down to less than 100mK for background-limited performance. The unique capability of Z-Spec to detect multiple lines simultaneously allows us to obtain information efficiently on the physical and chemical conditions of nearby Ultra-luminous Infrared Galaxies (ULIRGs) powered by starbursts or Active Galactic Nuclei. Here we report on new millimeter-wave broadband data for ULIRGs acquired with Z-Spec and the noise performance and achieved sensitivity in observations with the CSO. We found that during the observations the noise scales with the atmospheric opacity and can be explained well by our sensitivity model, considering the photon noise originating from the sky and the telescope, as well as the detector and electronics noise. The photon noise is found to dominate the total noise

    Characterisation of Herschel-SPIRE flight model optical performances

    Get PDF
    The Spectral and Photometric Imaging Receiver (SPIRE) is one of three scientific instruments on ESA's Herschel Space Observatory. This long wavelength instrument covers 200 to 670μm with a three band photometric camera and a two band imaging Fourier Transform Spectrometer (IFTS). Following first results reported in a previous paper, we discuss the in-band optical performances of the flight model as measured extensively during several dedicated test campaigns. Complementary to the experimentally probed spectral characteristics of the instrument detailed in an accompanying paper (see L.D. Spencer et al., in these proceedings), attention is focused here on a set of standard but key tests aimed at measuring the spatial response of the Photometer and Spectrometer end-to-end optical chain, including detector. Effects of defocus as well as source size extent, in-band wavelength, and polarization are also investigated over respective Photometer and Spectrometer field-of-views. Comparison with optical modelling, based on instrument design knowledge and some of the internal component measured characteristics, is performed. Beyond the specific characterisation of each effect, this allows estimating in each band where optical behaviour and detector behaviour respectively dominates and also reconstructing some of the contributors to the instrument throughput. Based on this analysis, retrieved optical performances are finally assessed against the related science-driven instrument requirements

    A Fluctuation Analysis of the Bolocam 1.1mm Lockman Hole Survey

    Full text link
    We perform a fluctuation analysis of the 1.1mm Bolocam Lockman Hole Survey, which covers 324 square arcmin to a very uniform point source-filtered RMS noise level of 1.4 mJy/beam. The fluctuation analysis has the significant advantage of utilizing all of the available data. We constrain the number counts in the 1-10 mJy range, and derive significantly tighter constraints than in previous work: the power-law index is 2.7 (+0.18, -0.15), while the amplitude is equal to 1595 (+85,-238) sources per mJy per square degree, or N(>1 mJy) = 940 (+50,-140) sources/square degree (95% confidence). Our results agree extremely well with those derived from the extracted source number counts by Laurent et al (2005). Our derived normalization is about 2.5 times smaller than determined by MAMBO at 1.2mm by Greve et al (2004). However, the uncertainty in the normalization for both data sets is dominated by the systematic (i.e., absolute flux calibration) rather than statistical errors; within these uncertainties, our results are in agreement. We estimate that about 7% of the 1.1mm background has been resolved at 1 mJy.Comment: To appear in the Astrophysical Journal; 22 pages, 9 figure

    Recent Patterns in Population-Based HIV Prevalence in Swaziland

    Get PDF
    Background: The 2011 Swaziland HIV Incidence Measurement Survey (SHIMS) was conducted as part of a national study to evaluate the scale up of key HIV prevention programs. Methods: From a randomly selected sample of all Swazi households, all women and men aged 18-49 were considered eligible, and all consenting adults were enrolled and received HIV testing and counseling. In this analysis, population-based measures of HIV prevalence were produced and compared against similarly measured HIV prevalence estimates from the 2006-7 Swaziland Demographic and Health. Also, measures of HIV service utilization in both HIV infected and uninfected populations were documented and discussed. Results: HIV prevalence among adults aged 18-49 has remained unchanged between 2006-2011 at 31-32%, with substantial differences in current prevalence between women (39%) and men (24%). In both men and women, between since 2006-7 and 2011, prevalence has fallen in the young age groups and risen in the older age groups. Over a third (38%) of the HIV-infected population was unaware of their infection status, and this differed markedly between men (50%) and women (31%). Of those aware of their HIV-positive status, a higher percentage of men (63%) than women (49%) reported ART use. Conclusions: While overall HIV prevalence remains roughly constant, age-specific changes strongly suggest both improved survival of the HIV-infected and a reduction in new HIV infections. Awareness of HIV status and entry into ART services has improved in recent years but remains too low. This study identifies opportunities to improve both HIV preventive and care services in Swaziland
    corecore