572 research outputs found

    What is the added value of digital image analysis of HER2 immunohistochemistry in breast cancer in clinical practice? A study with multiple platforms

    Get PDF
    Aims We aimed to compare digital image analysis (DIA) of human epidermal growth factor receptor 2 (HER2) immunohistochemistry (IHC) in breast cancer by two platforms: (i) to validate DIA against standard diagnostics; and (ii) to evaluate the added value of DIA in clinical practice. Methods and results HER2 IHC and in-situ hybridisation (ISH) were performed on 152 consecutive invasive breast carcinomas. IHC scores were determined with DIA using two independent platforms. Manual scoring was performed by two independent observers. HER2 status was considered positive in 3+ and ISH-positive 2+ cases. HER2 status using DIA was compared to HER2 status with standard diagnostics (manual scoring with ISH in 2+ cases). Interplatform agreement of IHC scores was 'moderate' (linear weighted kappa = 0.58), agreement between manual scoring and platform A was 'moderate' (kappa = 0.60) and between manual scoring and platform B 'almost perfect' (kappa = 0.85). Compared to manual scoring, DIA resulted in a reduction of 2+ cases from 17.1 to 1.3% with platform A and from 17.1 to 15.8% with platform B. However, compared to standard diagnostics, there were three false-negative cases with DIA using platform A [81.3% sensitivity, 100% specificity, 100% positive predictive value (PPV), 97.8% negative predictive value (NPV)]. Sensitivity, specificity, PPV and NPV were 100% with DIA using platform B. Conclusions DIA of HER2 IHC is a valid tool in determining HER2 status in breast carcinoma. Algorithms in different platforms can behave differently, and optimal calibration is essential. In clinical practice, DIA offers an objective alternative to manual scoring, but a reduction in 2+ cases could result in loss of sensitivity

    Systemic oxidative stress and antioxidant capacity in cancer patients

    Get PDF
    Various factors impact the outcome of patients with the diagnosis of cancer. Common treatment modalities of cancer, including surgery, radiation therapy and cytostatic agents, all lead to a systemic inflammatory reaction. In particular, this reaction is of physiological importance as it is crucial for patient recovery. However, in some patients, a self-perpetuating inflammatory response develops due to the presence of unfavorable risk factors, several of which are still unknown, but might lead to a worse disease prognosis. Inflammation has been intimately associated with oxidative stress, that is characterized by an imbalance between pro-oxidants, also termed reactive species, and antioxidants. Systemically, oxidative stress can be quantified by measuring thiols (R-SH, sulfhydryl compounds), which are considered to be regulatory nodes within the extracellular antioxidant network. Most importantly, thiol measurements in serum or plasma form a robust and powerful read-out of the in vivo reduction-oxidation (redox) status as thiols are highly redox-active and thus readily oxidized by circulating reactive species. Therefore, systemic quantification of thiols might be a valuable addition to the clinically available diagnostic and prognostic armamentarium as it is able to reliably capture the overall balance between oxidants and the antioxidant capacity of patients. In this review, we summarized the currently available literature on thiol levels as amendable markers for oxidative stress in patients with lung, prostate and colorectal cancer. Total thiols, native (free) thiols and disulfide levels are significantly altered in these patients compared to healthy individuals. In general, these findings indicate that the extracellular antioxidant capacity is severely affected in patients with these types of cancer. Moreover, lower thiol levels are associated with a lowered overall survival. Future research should focus on exploration of the clinical significance of thiols in cancer

    Simultaneous Identification of EGFR, KRAS, ERBB2, and TP53 Mutations in Patients with Non-Small Cell Lung Cancer by Machine Learning-Derived Three-Dimensional Radiomics

    Get PDF
    Simple Summary Multiple genetic mutations are associated with the outcomes of patients with non-small cell lung cancer (NSCLC) after using tyrosine kinase inhibitor, but the cost for detecting multiple genetic mutations is high. Few studies have investigated whether multiple genetic mutations can be simultaneously detected based on image features in patients with NSCLC. We developed a machine learning-derived radiomics approach that can simultaneously discriminate the presence of EGFR, KRAS, ERBB2, and TP53 mutations on CT images in patients with NSCLC. These findings suggest that machine learning-derived radiomics may become a noninvasive and low-cost method to screen for multiple genetic mutations in patients with NSCLC before using next-generation sequencing tests, which can help to improve individualized targeted therapies. Purpose: To develop a machine learning-derived radiomics approach to simultaneously discriminate epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene (KRAS), Erb-B2 receptor tyrosine kinase 2 (ERBB2), and tumor protein 53 (TP53) genetic mutations in patients with non-small cell lung cancer (NSCLC). Methods: This study included consecutive patients from April 2018 to June 2020 who had histologically confirmed NSCLC, and underwent pre-surgical contrast-enhanced CT and post-surgical next-generation sequencing (NGS) tests to determine the presence of EGFR, KRAS, ERBB2, and TP53 mutations. A dedicated radiomics analysis package extracted 1672 radiomic features in three dimensions. Discriminative models were established using the least absolute shrinkage and selection operator to determine the presence of EGFR, KRAS, ERBB2, and TP53 mutations, based on radiomic features and relevant clinical factors. Results: In 134 patients (63.6 +/- 8.9 years), the 20 most relevant radiomic features (13 for KRAS) to mutations were selected to construct models. The areas under the curve (AUCs) of the combined model (radiomic features and relevant clinical factors) for discriminating EGFR, KRAS, ERBB2, and TP53 mutations were 0.78 (95% CI: 0.70-0.86), 0.81 (0.69-0.93), 0.87 (0.78-0.95), and 0.84 (0.78-0.91), respectively. In particular, the specificity to exclude EGFR mutations was 0.96 (0.87-0.99). The sensitivity to determine KRAS, ERBB2, and TP53 mutations ranged from 0.82 (0.69-90) to 0.92 (0.62-0.99). Conclusions: Machine learning-derived 3D radiomics can simultaneously discriminate the presence of EGFR, KRAS, ERBB2, and TP53 mutations in patients with NSCLC. This noninvasive and low-cost approach may be helpful in screening patients before invasive sampling and NGS testing

    Comparison of two simulation methods for testing of algorithms to detect cyclist and pedestrian accidents in naturalistic data

    Get PDF
    Naturalistic studies can potentially be used to detect accidents of vulnerable road users and thus overcome the large degree of under-reporting in the official accident records. In this study, simulated cycling and walking accidents were performed by a stuntman and with a crash test dummy to test how they differ from each other and the potential implications of using simulated accidents as an alternative to real accidents. The study consisted of simulations of common accident types for cyclists and pedestrians, such as tripping over a curb or falling of the bike after hitting an obstacle. Motion data in terms of acceleration and rotation as well as the state of the screen (turned on/off) was collected via an Android smartphone to use as indicators for the motion patterns during accidents. The results show that dummy data have a distinct peak at the moment of the fall as a result of not being able to break the fall. As opposed to this, the stuntman arranges himself in a way to reduce the impact when hitting the ground. In real accidents, motion patterns will probably lie in-between these two types

    Feasibility of endometrial sampling by vaginal tampons in women with Lynch syndrome

    Get PDF
    Background: Endometrial sampling for the surveillance of women with Lynch syndrome is an invasive and painful procedure. The aim of this study was to evaluate the feasibility of a less invasive procedure of collecting vital cells by vaginal tampons. Methods: This was a prospective feasibility study of women scheduled to undergo annual gynecological surveillance, including endometrial sampling. We included consecutive asymptomatic women with Lynch syndrome or first-degree relatives and asked them to insert a vaginal tampon 2-4 h before attending their outpatient appointment. Feasibility was evaluated by the following metrics: Patient acceptance, pain intensity of each procedure (assessed by visual analog scale; range 0-10), and the presence of vital cells obtained by tampon-based or endometrial sampling methods. Two pathologists independently evaluated all samples. Results: In total, 25 of 32 approached women completed the tampon-based procedure, with 23 of these subsequently undergoing invasive endometrial sampling. The median visual analog scale scores for tampon use and invasive endometrial sampling were 0 (range, 0-10) and 5.5 (range, 1-10) (p < 0.001). None of the tampon samples analyzed by cytology showed endometrial cells, but they did contain vital squamous cells and granulocytes. By contrast, 18 (78%) of the invasive endometrial samples contained enough endometrial tissue for analysis. No endometrial abnormalities were found by endometrial sampling. Conclusions: Tampon-based endometrial surveillance was a well-accepted and non-painful procedure, and although tampons contained vital cells, they did not provide endometrial cells. However, this study was limited to asymptomatic women with Lynch syndrome (no endometrial pathology), indicating that research is needed to evaluate whether the tampon method has any utility for endometrial surveillance in women with Lynch syndrome

    Airflow limitation increases lung cancer risk in smokers:the Lifelines cohort study

    Get PDF
    BACKGROUND: The relationship between smoking, airflow limitation and lung cancer occurrence is unclear. This study aims to evaluate the relationship between airflow limitation and lung cancer, and the effect modification by smoking status. METHODS: We included participants with spirometry data from Lifelines, a population-based cohort study from the Northern Netherlands. Airflow limitation was defined as FEV1/FVC ratio &lt; 0.7. The presence of pathology-confirmed primary lung cancer during a median follow-up of 9.5 years was collected. The Cox regression model was used and hazard ratios (HR) with 95% confidence interval (95%CI) were reported. Adjusted confounders included age, sex, educational level, smoking, passive smoking, asthma status and asbestos exposure. The effect modification by smoking status was investigated by estimating the relative excess risk due to interaction (RERI) and the ratio of HRs with 95%CI. RESULTS: Out of 98,630 participants, 14,200 (14.4%) had airflow limitation. In participants with and without airflow limitation, lung cancer incidence was 0.8% and 0.2%, respectively. The adjusted HR between airflow limitation and lung cancer risk was 1.7 (1.4-2.3). The association between airflow limitation and lung cancer differed by smoking status [former smokers: 2.1 (1.4 -3.2), current smokers: 2.2 (1.5-3.2)] and never smokers [0.9 (0.4-2.1)]. The RERI and ratio of HRs was 2.1 (0.7-3.4) and 2.5 (1.0-6.5) for former smokers, and 4.6 (95%CI: 1.8-7.4) and 2.5 (95%CI: 1.0-6.3) for current smokers, respectively. CONCLUSIONS: Airflow limitation increases lung cancer risk and this association is modified by smoking status. IMPACT: Ever smokers with airflow limitation are an important target group for the prevention of lung cancer

    Lung cancer screening with low-dose CT:Simulating the effect of starting screening at a younger age in women

    Get PDF
    BACKGROUND: The US has recently lowered the entry age for lung cancer screening with low-dose computed tomography (LDCT) from 55 to 50 years. The effect of the younger age for starting screening on the rates of screen-detected and radiation-induced lung cancers in women remains unclear.METHODS: A modeling study was conducted. A static cohort of 100,000 heavy female smokers was simulated to undergo annual lung cancer screening with LDCT. The number of screen-detected lung cancers (benefit) and radiation-induced lung cancers (harm) per 1000 screenees were calculated for scenarios with two starting ages (55-50 years) and fixed stopping age (75 years). The benefit-harm ratio and incremental benefit-harm ratio (IBHR) were calculated for each scenario.RESULTS: For annual screening from 55 to 75 years, the number of screen-detected and radiation-induced lung cancers was 112.4 and 2.2, respectively. For annual screening from 50 to 75 years, those numbers were 117.0 and 3.4, respectively. The benefit-harm ratio decreased from 51 to 35 and the IBHR decreased from 6.3 to 4.0 when lowering the screening starting age from 55 to 50 years.CONCLUSIONS: The risk of radiation induced lung cancers increased by 50% when lowering the screening starting age by 5 years in women. However, the benefits of LDCT lung cancer screening still outweigh the assumed radiation harm.</p

    Supplementary data for a model-based health economic evaluation on lung cancer screening with low-dose computed tomography in a high-risk population

    Get PDF
    This supplementary data is supportive to the research article entitled ‘Cost-effectiveness of lung cancer screening with low-dose computed tomography (LDCT) in heavy smokers: A micro-simulation modelling study’ (Yihui Du et al. 2020). This supplementary contains a description of the model input and the related model output data that were not included in the research article. The input data used for the tumour growth model and the self-detected tumour size model are provided. The output data of this article include the data used for cost-effectiveness analysis of lung cancer LDCT screening with the Dutch and international discount rates, the data of the sensitivity analysis, and the data of the model validation

    F-18-FDG PET/CT Scans Can Identify Sub-Groups of NSCLC Patients with High Glucose Uptake in the Majority of Their Tumor Lesions

    Get PDF
    Background: Reprogrammed glucose metabolism is a hallmark of cancer making it an attractive therapeutic target, especially in cancers with high glucose uptake such as non-small cell lung cancer (NSCLC). Tools to select patients with high glucose uptake in the majority of tumor lesions are essential in the development of anti-cancer drugs targeting glucose metabolism. Type 2 diabetes mellitus (T2DM) patients may have tumors highly dependent on glucose uptake. Surprisingly, this has not been systematically studied. Therefore, we aimed to determine which patient and tumor characteristics, including concurrent T2DM, are related to high glucose uptake in the majority of tumor lesions in NSCLC patients as measured by 2-deoxy-2-[fluorine-18]fluoro-D-glucose (F-18-FDG) positron emission tomography (PET)/computed tomography (CT) scans. Methods: Routine primary diagnostic F-18-FDG PET/CT scans of consecutive NSCLC patients were included. Mean standardized uptake value (SUVmean) of F-18-FDG was determined for all evaluable tumor lesions and corrected for serum glucose levels according to the European Association of Nuclear Medicine Research Ltd guidelines. Patient characteristics potentially determining degree of tumor lesion glucose uptake in the majority of tumor lesions per patient were investigated. Results: The cohort consisted of 102 patients, 28 with T2DM and 74 without T2DM. The median SUVmean per patient ranged from 0.8 to 35.2 (median 4.2). T2DM patients had higher median glucose uptake in individual tumor lesions and per patient compared to non-diabetic NSCLC patients (SUVmean 4.3 vs 2.8, P = 1 mL per patient (odds ratio 0.8, 95% confidence interval 0.7-0.9). Conclusions: F-18-FDG PET/CT scans can identify sub-groups of NSCLC patients with high glucose uptake in the majority of their tumor lesions. T2DM patients had higher tumor lesion glucose uptake than non-diabetic patients. However, this was not independent of other factors such as the histological subtype and number of tumor lesions per patient

    Lung cancer occurrence attributable to passive smoking among never smokers in China:a systematic review and meta-analysis

    Get PDF
    Background: Quantifying the occurrence of lung cancer due to passive smoking is a necessary step when forming public health policy. In this study, we estimated the proportion of lung cancer cases attributable to passive smoking among never smokers in China. Methods: Six databases were searched up to July 2019 for original observational studies reporting relative risks (RRs) or odds ratios (ORs) for the occurrence of lung cancer associated with passive smoking in Chinese never smokers. The population attributable fraction (PAF) was then calculated using the combined proportion of lung cancer cases exposed to passive smoking and the pooled ORs from meta-analysis. Data are reported with their 95% confidence intervals. Results: We identified 31 case-control studies of never smokers and no cohort studies. These comprised 9,614 lung cancer cases and 13,093 controls. The overall percentages of lung cancers attributable to passive smoking among never smokers were 15.5% (9.0-21.4%) for 9 population-based studies and 22.7% (16.6-28.3%) for 22 hospital-based studies. The PAFs for women were 17.9% (11.4-24.0%) for the population-based studies and 20.9% (14.7-26.7%) for the hospital-based studies. The PAF for men was only calculable for hospital-based studies, which was 29.0% (95% CI: 8.0-45.2%). Among women, the percentage of lung cancer cases attributable to household exposure (19.5%) was much higher than that due to workplace exposure (7.2%). Conclusions: We conclude that approximately 16% of lung cancer cases among never smokers in China are potentially attributable to passive smoking. This is slightly higher among women (around 18%), with most cases occurring due to household exposure
    • …
    corecore