26 research outputs found

    Group psychodynamic counselling as a clinical training device to enhance metacognitive skills and agency in future clinical psychologists

    Get PDF
    Metacognitive skills and agency are among the main psychological abilities a clinical psychologist should have. This study aimed to assess the efficacy of group psychodynamic counselling as a clinical training device able to enhance metacognitive skills and agency in final-year undergraduates in clinical psychology within an educational context. Thirty-three final-year students of clinical psychology participated in an experiential laboratory lasting two months. Participants completed measures regarding metacognitive skills and agency at pre-, posttreatment, and 3-month follow-up assessment. The results suggested that group psychodynamic counselling made students feel more capable of recognizing emotional states, understanding causal relationships, inferring mental states of others in terms of beliefs, desires, intentions, and expectations, and thinking critically. Furthermore, the group psychodynamic counselling helped students to feel more able to derive pathways to desired goals and to motivate themselves via agency thinking to use those pathways. Thus, the study confirmed the efficacy of group psychodynamic counselling as a clinical training device able to enhance metacognitive skills and agency in future clinical psychologists

    Heparan sulfates facilitate harmless amyloidogenic fibril formation interacting with elastin-like peptides

    Get PDF
    Heparan sulfates (HSs) modulate tissue elasticity in physiopathological conditions by interacting with various matrix constituents as tropoelastin and elastin-derived peptides. HSs bind also to protein moieties accelerating amyloid formation and influencing cytotoxic properties of insoluble fibrils. Interestingly, amyloidogenic polypeptides, despite their supposed pathogenic role, have been recently explored as promising bio-nanomaterials due to their unique and interesting properties. Therefore, we investigated the interactions of HSs, obtained from different sources and exhibiting various degree of sulfation, with synthetic amyloidogenic elastin-like peptides (ELPs), also looking at the effects of these interactions on cell viability and cell behavior using in vitro cultured fibroblasts, as a prototype of mesenchymal cells known to modulate the soft connective tissue environment. Results demonstrate, for the first time, that HSs, with differences depending on their sulfation pattern and chain length, interact with ELPs accelerating aggregation kinetics and amyloid-like fibril formation as well as self-association. Furthermore, these fibrils do not negatively affect fibroblasts' cell growth and parameters of redox balance, and influence cellular adhesion properties. Data provide information for a better understanding of the interactions altering the elastic component in aging and in pathologic conditions and may pave the way for the development of composite matrix-based biomaterials

    The show must go on: a snapshot of Italian academic working life during mandatory work from home

    Get PDF
    During the COVID-19 pandemic, universities worldwide have provided continuity to research and teaching through mandatory work from home. Taking into account the specificities of the Italian academic environment and using the Job Demand-Resource-Recovery model, the present study provides, through an online survey, for the first time a description of the experiences of a large sample of academics (N = 2365) and technical and administrative staff (N = 4086) working in Italian universities. The study analyzes the main differences between genders, roles or work areas, in terms of some job demands, recovery experiences, and outcomes, all important dimensions to achieve goals 3, 4, and 5 of the 2030 Agenda for Sustainable Development. The results support the reflections on gender equality measures in universities and provide a general framework useful for further in-depth analysis and development of measures in order to improve well-being (SDG 3), quality of education (SDG 4), and gender equality (SDG 5)

    Domains 12 to 16 of tropoelastin promote cell attachment and spreading through interactions with glycosaminoglycan and integrins alphaV and alpha5beta1

    Get PDF
    Elastin is an extracellular matrix component with key structural and biological roles in elastic tissues. Interactions between resident cells and tropoelastin, the monomer of elastin, underpin elastin’s regulation of cellular processes. However, the nature of tropoelastin–cell interactions and the contributions of individual tropoelastin domains to these interactions are only partly elucidated. In this study, we identified and characterized novel cell-adhesive sites in the tropoelastin N-terminal region between domains 12 and 16. We found that this region interacts with aV and a5b1 integrin receptors, which mediate cell attachment and spreading. A peptide sequence from within this region, spanning domains 14 to mid-domain 16, binds heparan sulfate through electrostatic interactions with peptide lysine residues and induces conformational ordering of the peptide. We propose that domains 14–16 direct initial cell attachment through cell-surface heparan sulfate glycosaminoglycans, followed by aV and a5b1 integrin-promoted attachment and spreading on domains 12–16 of tropoelastin. These findings advance our mechanistic understanding of elastin matrix biology, with the potential to enhance tissue regenerative outcomes of elastin-based materials

    Road traffic pollution and childhood leukemia: a nationwide case-control study in Italy

    Get PDF
    Background The association of childhood leukemia with traffic pollution was considered in a number of studies from 1989 onwards, with results not entirely consistent and little information regarding subtypes. Aim of the study We used the data of the Italian SETIL case-control on childhood leukemia to explore the risk by leukemia subtypes associated to exposure to vehicular traffic. Methods We included in the analyses 648 cases of childhood leukemia (565 Acute lymphoblastic–ALL and 80 Acute non lymphoblastic-AnLL) and 980 controls. Information on traffic exposure was collected from questionnaire interviews and from the geocoding of house addresses, for all periods of life of the children. Results We observed an increase in risk for AnLL, and at a lower extent for ALL, with indicators of exposure to traffic pollutants. In particular, the risk was associated to the report of closeness of the house to traffic lights and to the passage of trucks (OR: 1.76; 95% CI 1.03–3.01 for ALL and 6.35; 95% CI 2.59–15.6 for AnLL). The association was shown also in the analyses limited to AML and in the stratified analyses and in respect to the house in different period of life. Conclusions Results from the SETIL study provide some support to the association of traffic related exposure and risk for AnLL, but at a lesser extent for ALL. Our conclusion highlights the need for leukemia type specific analyses in future studies. Results support the need of controlling exposure from traffic pollution, even if knowledge is not complete

    A Geostatistical Approach to Assess the Spatial Association between Indoor Radon Concentration, Geological Features and Building Characteristics: The Case of Lombardy, Northern Italy

    Get PDF
    Radon is a natural gas known to be the main contributor to natural background radiation exposure and second to smoking, a major leading cause of lung cancer. The main source of radon is the soil, but the gas can enter buildings in many different ways and reach high indoor concentrations. Monitoring surveys have been promoted in many countries in order to assess the exposure of people to radon. In this paper, two complementary aspects are investigated. Firstly, we mapped indoor radon concentration in a large and inhomogeneous region using a geostatistical approach which borrows strength from the geologic nature of the soil. Secondly, knowing that geologic and anthropogenic factors, such as building characteristics, can foster the gas to flow into a building or protect against this, we evaluated these effects through a multiple regression model which takes into account the spatial correlation of the data. This allows us to rank different building typologies, identified by architectonic and geological characteristics, according to their proneness to radon. Our results suggest the opportunity to differentiate construction requirements in a large and inhomogeneous area, as the one considered in this paper, according to different places and provide a method to identify those dwellings which should be monitored more carefully

    Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study

    Get PDF
    Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease. Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (Aβ) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed. Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG). Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD

    Prodromal neuroinflammatory, cholinergic and metabolite dysfunction detected by PET and MRS in the TgF344-AD transgenic rat model of AD: a collaborative multi-modal study

    Get PDF
    Mouse models of Alzheimer's disease (AD) are valuable but do not fully recapitulate human AD pathology, such as spontaneous Tau fibril accumulation and neuronal loss, necessitating the development of new AD models. The transgenic (TG) TgF344-AD rat has been reported to develop age-dependent AD features including neuronal loss and neurofibrillary tangles, despite only expressing APP and PSEN1 mutations, suggesting an improved modelling of AD hallmarks. Alterations in neuronal networks as well as learning performance and cognition tasks have been reported in this model, but none have combined a longitudinal, multimodal approach across multiple centres, which mimics the approaches commonly taken in clinical studies. We therefore aimed to further characterise the progression of AD-like pathology and cognition in the TgF344-AD rat from young-adults (6 months (m)) to mid- (12 m) and advanced-stage (18 m, 25 m) of the disease.Methods: TgF344-AD rats and wild-type (WT) littermates were imaged at 6 m, 12 m and 18 m with [18F]DPA-714 (TSPO, neuroinflammation), [18F]Florbetaben (A beta) and [18F]ASEM (α7-nicotinic acetylcholine receptor) and with magnetic resonance spectroscopy (MRS) and with (S)-[18F]THK5117 (Tau) at 15 and 25 m. Behaviour tests were also performed at 6 m, 12 m and 18 m. Immunohistochemistry (CD11b, GFAP, Aβ, NeuN, NeuroChrom) and Tau (S)-[18F]THK5117 autoradiography, immunohistochemistry and Western blot were also performed.Results: [18F]DPA-714 positron emission tomography (PET) showed an increase in neuroinflammation in TG vs wildtype animals from 12 m in the hippocampus (+11%), and at the advanced-stage AD in the hippocampus (+12%), the thalamus (+11%) and frontal cortex (+14%). This finding coincided with strong increases in brain microgliosis (CD11b) and astrogliosis (GFAP) at these time-points as assessed by immunohistochemistry. In vivo [18F]ASEM PET revealed an age-dependent increase uptake in the striatum and pallidum/nucleus basalis of Meynert in WT only, similar to that observed with this tracer in humans, resulting in TG being significantly lower than WT by 18 m. In vivo [18F]Florbetaben PET scanning detected Aβ accumulation at 18 m, and (S)-[18F]THK5117 PET revealed subsequent Tau accumulation at 25m in hippocampal and cortical regions. Aβ plaques were low but detectable by immunohistochemistry from 6 m, increasing further at 12 and 18 m with Tau-positive neurons adjacent to Aβ plaques at 18 m. NeuroChrom (a pan neuronal marker) immunohistochemistry revealed a loss of neuronal staining at the Aβ plaques locations, while NeuN labelling revealed an age-dependent decrease in hippocampal neuron number in both genotypes. Behavioural assessment using the novel object recognition task revealed that both WT & TgF344-AD animals discriminated the novel from familiar object at 3 m and 6 m of age. However, low levels of exploration observed in both genotypes at later time-points resulted in neither genotype successfully completing the task. Deficits in social interaction were only observed at 3 m in the TgF344-AD animals. By in vivo MRS, we showed a decrease in neuronal marker N-acetyl-aspartate in the hippocampus at 18 m (-18% vs age-matched WT, and -31% vs 6 m TG) and increased Taurine in the cortex of TG (+35% vs age-matched WT, and +55% vs 6 m TG).Conclusions: This multi-centre multi-modal study demonstrates, for the first time, alterations in brain metabolites, cholinergic receptors and neuroinflammation in vivo in this model, validated by robust ex vivo approaches. Our data confirm that, unlike mouse models, the TgF344-AD express Tau pathology that can be detected via PET, albeit later than by ex vivo techniques, and is a useful model to assess and longitudinally monitor early neurotransmission dysfunction and neuroinflammation in AD.</p

    Formazione pubblica a confronto

    No full text
    Il libro fa parte della Collana "Formazione per la pubblica amministrazione" diretta dal Prof. Gian Piero Quaglin
    corecore