82 research outputs found

    The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Considering that a portion of the heterogeneity amongst previous replication studies may be due to a variable proportion of obese subjects in case-control designs, we assessed the association of genetic variants with type 2 diabetes (T2D) in large groups of obese and non-obese subjects.</p> <p>Methods</p> <p>We genotyped <it>RETN</it>, <it>KCNJ11</it>, <it>HNF4A</it>, <it>HNF1A</it>, <it>GCK</it>, <it>SLC30A8</it>, <it>ENPP1</it>, <it>ADIPOQ</it>, <it>PPARG</it>, and <it>TCF7L2 </it>polymorphisms in 1,283 normoglycemic (NG) and 1,581 T2D obese individuals as well as in 3,189 NG and 1,244 T2D non-obese subjects of European descent, allowing us to examine T2D risk over a wide range of BMI.</p> <p>Results</p> <p>Amongst non-obese individuals, we observed significant T2D associations with <it>HNF1A </it>I27L [odds ratio (OR) = 1.14, <it>P </it>= 0.04], <it>GCK </it>-30G>A (OR = 1.23, <it>P </it>= 0.01), <it>SLC30A8 </it>R325W (OR = 0.87, <it>P </it>= 0.04), and <it>TCF7L2 </it>rs7903146 (OR = 1.89, <it>P </it>= 4.5 × 10<sup>-23</sup>), and non-significant associations with <it>PPARG </it>Pro12Ala (OR = 0.85, <it>P </it>= 0.14), <it>ADIPOQ </it>-11,377C>G (OR = 1.00, <it>P </it>= 0.97) and <it>ENPP1 </it>K121Q (OR = 0.99, <it>P </it>= 0.94). In obese subjects, associations with T2D were detected with <it>PPARG </it>Pro12Ala (OR = 0.73, <it>P </it>= 0.004), <it>ADIPOQ </it>-11,377C>G (OR = 1.26, <it>P </it>= 0.02), <it>ENPP1 </it>K121Q (OR = 1.30, <it>P </it>= 0.003) and <it>TCF7L2 </it>rs7903146 (OR = 1.30, <it>P </it>= 1.1 × 10<sup>-4</sup>), and non-significant associations with <it>HNF1A </it>I27L (OR = 0.96, <it>P </it>= 0.53), <it>GCK </it>-30G>A (OR = 1.15, <it>P </it>= 0.12) and <it>SLC30A8 </it>R325W (OR = 0.95, <it>P </it>= 0.44). However, a genotypic heterogeneity was only found for <it>TCF7L2 </it>rs7903146 (<it>P </it>= 3.2 × 10<sup>-5</sup>) and <it>ENPP1 </it>K121Q (<it>P </it>= 0.02). No association with T2D was found for <it>KCNJ11</it>, <it>RETN</it>, and <it>HNF4A </it>polymorphisms in non-obese or in obese individuals.</p> <p>Conclusion</p> <p>Genetic variants modulating insulin action may have an increased effect on T2D susceptibility in the presence of obesity, whereas genetic variants acting on insulin secretion may have a greater impact on T2D susceptibility in non-obese individuals.</p

    Taphonomic Criteria for Identifying Iberian Lynx Dens in Quaternary Deposits

    Get PDF
    For decades, taphonomists have dedicated their efforts to assessing the nature of the massive leporid accumulations recovered at archaeological sites in the northwestern Mediterranean region. Their interest lying in the fact that the European rabbit constituted a critical part of human subsistence during the late Pleistocene and early Holocene. However, rabbits are also a key prey in the food webs of Mediterranean ecosystems and the base of the diet for several specialist predators, including the Iberian lynx (Lynx pardinus). For this reason, the origin of rabbit accumulations in northwestern Mediterranean sites has proved a veritable conundrum. Here, we present the zooarchaeological and taphonomic study of more than 3000 faunal and 140 coprolite remains recovered in layer IIIa of Cova del Gegant (Catalonia, Spain). Our analysis indicates that this layer served primarily as a den for the Iberian lynx. The lynxes modified and accumulated rabbit remains and also died at the site creating an accumulation dominated by the two taxa. However, other agents and processes, including human, intervened in the final configuration of the assemblage. Our study contributes to characterizing the Iberian lynx fossil accumulation differentiating between the faunal assemblages accumulated by lynxes and hominins

    Active Vibration Control of a Nonlinear Beam with Self- and External Excitations

    Full text link
    An application of the nonlinear saturation control (NSC) algorithm for a self-excited strongly nonlinear beam structure driven by an external force is presented in the paper. The mathematical model accounts for an Euler-Bernoulli beam with nonlinear curvature, reduced to first mode oscillations. It is assumed that the beam vibrates in the presence of a harmonic excitation close to the first natural frequency of the beam, and additionally the beam is self-excited by fluid flow, which is modelled by a nonlinear Rayleigh term for self-excitation. The self- and externally excited vibrations have been reduced by the application of an active, saturation-based controller. The approximate analytical solutions for a full structure have been found by the multiple time scales method, up to the first-order approximation. The analytical solutions have been compared with numerical results obtained from direct integration of the ordinary differential equations of motion. Finally, the influence of a negative damping term and the controller's parameters for effective vibrations suppression are presented
    corecore