16 research outputs found

    Photo Essays

    No full text

    The EXoplanet Climate Infrared TElescope (EXCITE)

    Get PDF
    he EXoplanet Climate Infrared TElescope (EXCITE) is a 0.5 meter near-infrared spectrograph that will fly from a high altitude balloon platform. EXCITE is designed to perform phase-resolved spectroscopy – continuous spectroscopic observations of a planet’s entire orbit about its host star – of transiting hot Jupiter-type exoplanets. With spectral coverage from 0.8 – 4 um, EXCITE will measure the peak of a target’s spectral energy distribution and the spectral signatures of many hydrogen and carbon-containing molecules. Phase curve observations are highly resource intensive, especially for shared-use facilities, and they require exceptional photometric stability that is difficult to achieve, even from space. In this work, we introduce the EXCITE experiment and explain how it will solve both these problems. We discuss its sensitivity and stability, then provide an update on its current status as we work toward a 2024 long duration science flight

    Design and testing of a low-resolution NIR spectrograph for the EXoplanet Climate Infrared TElescope

    Get PDF
    The EXoplanet Climate Infrared TElescope (EXCITE) experiment is a balloon-borne, purpose-designed mission to measure spectroscopic phase curves of short-period extrasolar giant planets (EGPs, or “hot Jupiters”). Here, we present EXCITE’s principal science instrument: a high-throughput, single-object spectrograph operating in the 0.8-2.5 µm and 2.5-4.0 µm bands with R≥50. Our compact design achieves diffraction-limited, on-axis performance with just three powered optics: two off-axis parabolic mirrors and a CaF2 prism. We discuss the optical and mechanical design, the expected optical performance of the spectrograph, and summarize the tolerances needed to achieve that performance. We also discuss plans for establishing alignment of the optics and verifying the optical performance
    corecore