2 research outputs found

    Intrinsic neural timescales in the temporal lobe support an auditory processing hierarchy

    Get PDF
    During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial electroencephalography in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT:Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial electroencephalography (iEEG), we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of iEEG responses to sounds: cortical electrodes with fast timescales also show fast and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses

    Dopamine depletion induces neuron‐specific alterations of GABAergic transmission in the mouse striatum

    Full text link
    Lack of dopamine (DA) in the striatum and the consequential dysregulation of thalamocortical circuits are major causes of motor impairments in Parkinson's disease. The striatum receives multiple cortical and subcortical afferents. Its role in movement control and motor skills learning is regulated by DA from the nigrostriatal pathway. In Parkinson's disease, DA loss affects striatal network activity and induces a functional imbalance of its output pathways, impairing thalamocortical function. Striatal projection neurons are GABAergic and form two functionally antagonistic pathways: the direct pathway, originating from DA receptor type 1-expressing medium spiny neurons (D1 R-MSN), and the indirect pathway, from D2 R-MSN. Here, we investigated whether DA depletion in mouse striatum also affects GABAergic function. We recorded GABAergic miniature IPSCs (mIPSC) and tonic inhibition from D1 R- and D2 R-MSN and used immunohistochemical labeling to study GABAA R function and subcellular distribution in DA-depleted and control mice. We observed slower decay kinetics and increased tonic inhibition in D1 R-MSN, while D2 R-MSN had increased mIPSC frequency after DA depletion. Perisomatic synapses containing the GABAA R subunits α1 or α2 were not affected, but there was a strong decrease in non-synaptic GABAA Rs containing these subunits, suggesting altered receptor trafficking. To broaden these findings, we also investigated GABAA Rs in GABAergic and cholinergic interneurons and found cell type-specific alterations in receptor distribution, likely reflecting changes in connectivity. Our results reveal that chronic DA depletion alters striatal GABAergic transmission, thereby affecting cellular and circuit activity. These alterations either result from pathological changes or represent a compensatory mechanism to counteract imbalance of output pathways
    corecore