3 research outputs found
Can Carbon Fluxes Explain Differences in Soil Organic Carbon Storage Under Aspen and Conifer Forest Overstories?
Climate- and management-induced changes in tree species distributions are raising questions regarding tree species-specific effects on soil organic carbon (SOC) storage and stability. Quaking aspen (Populus tremuloides Michx.) is the most widespread tree species in North America, but fire exclusion often promotes the succession to conifer dominated forests. Aspen in the Western US have been found to store more SOC in the mineral soil than nearby conifers, but we do not yet fully understand the source of this differential SOC accumulation. We measured total SOC storage (0–50 cm), characterized stable and labile SOC pools, and quantified above- and belowground litter inputs and dissolved organic carbon (DOC) fluxes during snowmelt in plots located in N and S Utah, to elucidate the role of foliage vs. root detritus in SOC storage and stabilization in both ecosystems. While leaf litterfall was twice as high under aspen as under conifers, input of litter-derived DOC with snowmelt water was consistently higher under conifers. Fine root (mm) biomass, estimated root detritus input, and root-derived DOC fluxes were also higher under conifers. A strong positive relationship between root and light fraction C content suggests that root detritus mostly fueled the labile fraction of SOC. Overall, neither differences in above- and belowground detritus C inputs nor in detritus-derived DOC fluxes could explain the higher and more stable SOC pools under aspen. We hypothesize that root–microbe–soil interactions in the rhizosphere are more likely to drive these SOC pool differences
Aspen Soils Retain More Dissolved Organic Carbon Than Conifer Soils in a Sorption Experiment
The effect tree species have on soil organic carbon (SOC) has been hotly debated but, so far, few clear patterns have emerged. One example of a differing tree species effect on SOC is aspen forests in North America, which have been found to have more stable SOC than adjacent conifer forest stands. An important source for the formation of stable organo-mineral complexes in the soil is dissolved organic carbon (DOC). DOC concentrations in mineral soil are often higher under the thick O-horizons of conifer forests than under aspen forests, but this does not correspond to more stable mineral SOC. This suggests that, instead of DOC concentration, DOC quality could be driving the observed differences in SOC. Therefore, we quantified the retention of contrasting forest detritus DOC in soils. Using a batch sorption experiment approach, we compared the retention of detritus leachates from four sources – aspen leaves (AL), aspen roots (AR), conifer (subalpine fir) needles (CN), and conifer (subalpine fir) roots (CR) – on soils sampled under aspen and conifer (subalpine fir and Douglas fir) overstories. The calculated sorption isotherms showed higher retention of AL DOC than AR DOC, as indicated by all four sorption parameters – k and n (curve-fitting parameters), null point concentration (NPC; net sorption = net desorption), and endpoint (EP, retention at the highest initial DOC concentration). Leachates from CN and CR showed very similar retention behavior, and between the two species, the retention of root leachates was more similar than the retention of foliage leachates. Soils sampled from aspen forests showed a higher affinity for new DOC than conifer soils [higher sorption rate (n), lower NPC, and higher EP] regardless of the DOC source. The findings suggest that the higher DOC sorption on aspen soils might be a major driver for more stable SOC under aspen stands in North America