281 research outputs found
Probabilistic study of the speed of approach to equilibrium for an inelastic Kac model
This paper deals with a one--dimensional model for granular materials, which
boils down to an inelastic version of the Kac kinetic equation, with
inelasticity parameter . In particular, the paper provides bounds for
certain distances -- such as specific weighted --distances and the
Kolmogorov distance -- between the solution of that equation and the limit. It
is assumed that the even part of the initial datum (which determines the
asymptotic properties of the solution) belongs to the domain of normal
attraction of a symmetric stable distribution with characteristic exponent
\a=2/(1+p). With such initial data, it turns out that the limit exists and is
just the aforementioned stable distribution. A necessary condition for the
relaxation to equilibrium is also proved. Some bounds are obtained without
introducing any extra--condition. Sharper bounds, of an exponential type, are
exhibited in the presence of additional assumptions concerning either the
behaviour, near to the origin, of the initial characteristic function, or the
behaviour, at infinity, of the initial probability distribution function
Kinematics of Tycho-2 Red Giant Clump Stars
Based on the Ogorodnikov-Milne model, we analyze the proper motions of 95 633
red giant clump (RGC) stars from the Tycho-2 Catalogue. The following Oort
constants have been found: A = 15.9+-0.2 km/s/kpc and B = -12.0+-0.2 km/s/kpc.
Using 3632 RGC stars with known proper motions, radial velocities, and
photometric distances, we show that, apart from the star centroid velocity
components relative to the Sun, only the model parameters that describe the
stellar motions in the XY plane differ significantly from zero. We have studied
the contraction (a negative K-effect) of the system of RGC stars as a function
of their heliocentric distance and elevation above the Galactic plane. For a
sample of distant (500--1000 pc) RGC stars located near the Galactic plane
(|Z|<200 pc) with an average distance of d=0.7 kpc, the contraction velocity is
shown to be Kd= -3.5+-0.9 km/s; a noticeable vertex deviation, lxy = 9.1+-0.5
degrees, is also observed for them. For stars located well above the Galactic
plane (|Z|>=200 pc), these effects are less pronounced, Kd = -1.7+-0.5 km/s and
lxy = 4.9+-0.6 degrees. Using RGC stars, we have found a rotation around the
Galactic X axis directed toward the Galactic center with an angular velocity of
-2.5+-0.3 km/s/kpc, which we associate with the warp of the Galactic
stellar-gaseous disk.Comment: 23 pages, 7 figures, 4 table
Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solutions and tail behavior
We consider the spatially homogeneous Boltzmann equation for inelastic hard
spheres, in the framework of so-called constant normal restitution
coefficients. We prove the existence of self-similar solutions, and we give
pointwise estimates on their tail. We also give general estimates on the tail
and the regularity of generic solutions. In particular we prove Haff 's law on
the rate of decay of temperature, as well as the algebraic decay of
singularities. The proofs are based on the regularity study of a rescaled
problem, with the help of the regularity properties of the gain part of the
Boltzmann collision integral, well-known in the elastic case, and which are
extended here in the context of granular gases.Comment: 41 page
On a kinetic model for a simple market economy
In this paper, we consider a simple kinetic model of economy involving both
exchanges between agents and speculative trading. We show that the kinetic
model admits non trivial quasi-stationary states with power law tails of Pareto
type. In order to do this we consider a suitable asymptotic limit of the model
yielding a Fokker-Planck equation for the distribution of wealth among
individuals. For this equation the stationary state can be easily derived and
shows a Pareto power law tail. Numerical results confirm the previous analysis
On the speed of approach to equilibrium for a collisionless gas
We investigate the speed of approach to Maxwellian equilibrium for a
collisionless gas enclosed in a vessel whose wall are kept at a uniform,
constant temperature, assuming diffuse reflection of gas molecules on the
vessel wall. We establish lower bounds for potential decay rates assuming
uniform bounds on the initial distribution function. We also obtain a
decay estimate in the spherically symmetric case. We discuss with particular
care the influence of low-speed particles on thermalization by the wall.Comment: 22 pages, 1 figure; submitted to Kinetic and Related Model
Kinetic models with randomly perturbed binary collisions
We introduce a class of Kac-like kinetic equations on the real line, with
general random collisional rules, which include as particular cases models for
wealth redistribution in an agent-based market or models for granular gases
with a background heat bath. Conditions on these collisional rules which
guarantee both the existence and uniqueness of equilibrium profiles and their
main properties are found. We show that the characterization of these
stationary solutions is of independent interest, since the same profiles are
shown to be solutions of different evolution problems, both in the econophysics
context and in the kinetic theory of rarefied gases
Open Clusters IC 4665 and Cr 359 and a Probable Birthplace of the Pulsar PSR B1929+10
Based on the epicyclic approximation, we have simulated the motion of the
young open star clusters IC 4665 and Collinder 359. The separation between the
cluster centers is shown to have been minimal 7 Myr ago, 36 pc. We have
established a close evolutionary connection between IC 4665 and the
Scorpius-Centaurus association -- the separation between the centers of these
structures was pc 15 Myr ago. In addition, the center of IC 4665
at this time was near two well-known regions of coronal gas: the Local Bubble
and the North Polar Spur. The star HIP 86768 is shown to be one of the
candidates for a binary (in the past) with the pulsar PSR B1929+10. At the
model radial velocity of the pulsar km s, a close
encounter of this pair occurs in the vicinity of IC 4665 at a time of -1.1 Myr.
At the same time, using currently available data for the pulsar B1929+10 at its
model radial velocity km s, we show that the hypothesis
of Hoogerwerf et al. (2001) about the breakup of the Oph--B1929+10
binary in the vicinity of Upper Scorpius (US) about 0.9 Myr ago is more
plausible.Comment: 19 pages, 8 figure
Evolution of the Velocity Ellipsoids in the Thin Disk of the Galaxy and the Radial Migration of Stars
Data from the revised Geneva--Copenhagen catalog are used to study the
influence of radial migration of stars on the age dependences of parameters of
the velocity ellipsoids for nearby stars in the thin disk of the Galaxy,
assuming that the mean radii of the stellar orbits remain constant. It is
demonstrated that precisely the radial migration of stars, together with the
negative metallicity gradient in the thin disk,are responsible for the observed
negative correlation between the metallicities and angular momenta of nearby
stars, while the angular momenta of stars that were born at the same
Galactocentric distances do not depend on either age or metallicity. (abridged)Comment: Astronomy Reports, Vol. 86 No. 9, P.1117-1126 (2009
Analysis of Peculiarities of the Stellar Velocity Field in the Solar Neighborhood
Based on a new version of the Hipparcos catalogue and an updated
Geneva-Copenhagen survey of F and G dwarfs, we analyze the space velocity field
of about 17000 single stars in the solar neighborhood. The main known clumps,
streams, and branches (Pleiades, Hyades, Sirius, Coma Berenices, Hercules, Wolf
630-alpha Ceti, and Arcturus) have been identified using various approaches.
The evolution of the space velocity field for F and G dwarfs has been traced as
a function of the stellar age. We have managed to confirm the existence of the
recently discovered KFR08 stream. We have found 19 Hipparcos stars, candidates
for membership in the KFR08 stream, and obtained an isochrone age estimate for
the stream, 13 Gyr. The mean stellar ages of the Wolf 630-alpha Ceti and
Hercules streams are shown to be comparable, 4--6 Gyr. No significant
differences in the metallicities of stars belonging to these streams have been
found. This is an argument for the hypothesis that these streams owe their
origin to a common mechanism.Comment: 23 pages, 9 figure
Relationship between the Velocity Ellipsoids of Galactic-Disk Stars and their Ages and Metallicities
The dependences of the velocity ellipsoids of F-G stars of the thin disk of
the Galaxy on their ages and metallicities are analyzed based on the new
version of the Geneva-Copenhagen Catalog. The age dependences of the major,
middle, and minor axes of the ellipsoids, and also of the dispersion of the
total residual veltocity, obey power laws with indices 0.25,0.29,0.32, and 0.27
(with uncertainties \pm 0.02). Due to the presence of thick-disk objects, the
analogous indices for all nearby stars are about a factor of 1.5 larger.
Attempts to explain such values are usually based on modeling relaxation
processes in the Galactic disk. With increasing age, the velocity ellipsoid
increases in size and becomes appreciably more spherical, turns toward the
direction of the Galactic center, and loses angular momentum. The shape of the
velocity ellipsoid remains far from equilibrium. With increasing metallicity,
the velocity ellipsoid for stars of mixed age increases in size, displays a
weak tendency to become more spherical, and turns toward the direction of the
Galactic center (with these changes occurring substantially more rapidly in the
transition through the metallicity [Fe/H]= -0.25). Thus, the ellipsoid changes
similarly to the way it does with age; however, with decreasing metallicity,
the rotational velocity about the Galactic center monotonically increases,
rather than decreases(!). Moreover, the power-law indices for the age
dependences of the axes depend on the metallicity, and display a maximum near
[Fe/H]=-0.1. The age dependences of all the velocity-ellipsoid parameters for
stars with equal metallicity are roughly the same. It is proposed that the
appearance of a metallicity dependence of the velocity ellipsoids for thin-disk
stars is most likely due to the radial migration of stars.Comment: 15 pages, 6 figures, accepted 2009, Astronomy Reports, Vol. 53 No. 9,
P.785-80
- …