2,714 research outputs found
On moments-preserving cosine families and semigroups in
We use the newly developed Kelvin's method of images \cite{kosinusy,kelvin}
to show existence of a unique cosine family generated by a restriction of the
Laplace operator in , that preserves the first two moments. We
characterize the domain of its generator by specifying its boundary conditions.
Also, we show that it enjoys inherent symmetry properties, and in particular
that it leaves the subspaces of odd and even functions invariant. Furthermore,
we provide information on long-time behavior of the related semigroup.Comment: 20 pages, 2 figure
The Topology of Probability Distributions on Manifolds
Let be a set of random points in , generated from a probability
measure on a -dimensional manifold . In this paper we study
the homology of -- the union of -dimensional balls of radius
around , as , and . In addition we study the critical
points of -- the distance function from the set . These two objects
are known to be related via Morse theory. We present limit theorems for the
Betti numbers of , as well as for number of critical points of index
for . Depending on how fast decays to zero as grows, these two
objects exhibit different types of limiting behavior. In one particular case
(), we show that the Betti numbers of perfectly
recover the Betti numbers of the original manifold , a result which is of
significant interest in topological manifold learning
Structuring of Ranked Models
Prognostic procedures can be based on ranked linear models. Ranked regression type models are
designed on the basis of feature vectors combined with set of relations defined on selected pairs of these vectors.
Feature vectors are composed of numerical results of measurements on particular objects or events. Ranked
relations defined on selected pairs of feature vectors represent additional knowledge and can reflect experts'
opinion about considered objects. Ranked models have the form of linear transformations of feature vectors on a
line which preserve a given set of relations in the best manner possible. Ranked models can be designed through
the minimization of a special type of convex and piecewise linear (CPL) criterion functions. Some sets of ranked
relations cannot be well represented by one ranked model. Decomposition of global model into a family of local
ranked models could improve representation. A procedures of ranked models decomposition is described in this
paper
- …
