245 research outputs found

    Atomic coexistence of superconductivity and incommensurate magnetic order in the Ba(Fe1-xCox)2As2 pnictide

    Full text link
    75As NMR and susceptiblity were measured in a Ba(Fe1-xCox)2As2 single crystal for x=6%. Nuclear Magnetic Resonance (NMR) spectra and relaxation rates allow to show that all Fe sites experience an incommensurate magnetic ordering below T=31K. Comparison with undoped compound allows to estimate a typical moment of 0.05 muB. Anisotropy of the NMR widths can be interpreted using a model of incommensurability with a wavevector (1/2-eps,0,l) with eps of the order of 0.04. Below TC=21.8K, a full volume superconductivity develops as shown by susceptibility and relaxation rate, and magnetic order remains unaffected, demonstrating coexistence of both states on each Fe site.Comment: 4 pages, 4 figure

    Study of one-dimensional nature of (Sr,Ba)_2Cu(PO_4)_2 and BaCuP_2O_7 via 31P NMR

    Full text link
    The magnetic behavior of the low-dimensional phosphates (Sr,Ba)_2 Cu(PO_4)_2 and BaCuP_2O_7 was investigated by means of magnetic susceptibility and ^{31}P nuclear magnetic resonance (NMR) measurements. We present here the NMR shift K(T), the spin-lattice 1/T_1 and spin-spin 1/T_2 relaxation-rate data over a wide temperature range 0.02 K < T < 300 K. The T-dependence of the NMR K(T) is well described by the S=1/2 Heisenberg antiferromagnetic chain model with an intrachain exchange of J/k_B = 165 K, 151 K, and 108 K in Sr_2Cu(PO_4)_2, Ba_2Cu(PO_4)_2, and BaCuP_2O_7, respectively. Our measurements suggest the presence of magnetic ordering at 0.8 K in BaCuP_2O_7 (J/k_B = 108 K). For all the samples, we find that 1/T_1 is nearly T-independent at low-temperatures (1 K < T < 10 K), which is theoretically expected for 1D chains when relaxation is dominated by fluctuations of the staggered susceptibility. At high temperatures, 1/T_1 varies nearly linearly with temperature

    Spin-gap behaviour in the 2-leg spin-ladder BiCu2PO6

    Full text link
    We present magnetic suscceptibility and heat capacity data on a new S=1/2 two-leg spin ladder compound BiCu2PO6. From our susceptibility analysis, we find that the leg coupling J1/k_B is ~ 80 K and the ratio of the rung to leg coupling J2/J1 ~ 0.9. We present the magnetic contribution to the heat capacity of a two-leg ladder. The spin-gap Delta/k_B =3 4 K obtained from the heat capacity agrees very well with that obtained from the magnetic susceptibility. Significant inter-ladder coupling is suggested from the susceptibility analysis. The hopping integrals determined using Nth order muffin tin orbital (NMTO) based downfolding method lead to ratios of various exchange couplings in agreement with our experimental data. Based on our band structure analysis, we find the inter-ladder coupling in the bc-plane J2 to be about 0.75J1 placing the compound presumably close to the quantum critical limit.Comment: 8 pages, 5 figure

    Correlation length in cuprates deduced from the impurity-induced magnetization

    Full text link
    We report a new multi-nuclei based NMR method which allows us to image the staggered polarization induced by nonmagnetic Li impurities in underdoped O6.6 and slightly overdoped O7 YBa2Cu3O6+y above T_C. The spatial extension of the polarization xi_imp approximately follows a Curie law, increasing up to six lattice constants at T=80K at O6.6 in the pseudogap regime. Near optimal doping, the staggered magnetization has the same shape, with xi_imp reduced by a factor 2. xi_imp is argued to reveal the intrinsic magnetic correlation length of the pure system. It is found to display a smooth evolution through the pseudogap regime.Comment: 8 latex pages + 8 figures, to appear in Physical Review B, this resubmitted version is twice longer than the previous one : we detail here our method to determine the impurity-induced magnetizatio

    From ANT to Material agency: a design and science research workshop

    Get PDF
    International audienceThis paper studies a design workshop that investigates complex collaboration between fundamental physics and design. Our research focuses on how students create original artefacts that bridge the gap between disciplines that have very little in common. Our goal is to study the micro-evolutions of their projects. Elaborating first on Actor Network Theory (Latour, 1996; 2005) we study how students' projects evolved over time and through a diversity of inputs and media. Throughout this longitudinal study, we use then a semiotic and pragmatic approach to observe three "aesthetical formations": translation, composition, and stabilization. These formations suggest that the question of material agency developed in the field of archeology and cognitive science (Knappett & Malafouris, 2008) need to be considered in the design field (Renon, 2016) to explain metamorphoses from the brief to the final realizations

    Mn local moments prevent superconductivity in iron-pnictides Ba(Fe 1-x Mn x)2As2

    Full text link
    75As nuclear magnetic resonance (NMR) experiments were performed on Ba(Fe1-xMnx)2As2 (xMn = 2.5%, 5% and 12%) single crystals. The Fe layer magnetic susceptibility far from Mn atoms is probed by the75As NMR line shift and is found similar to that of BaFe2As2, implying that Mn does not induce charge doping. A satellite line associated with the Mn nearest neighbours (n.n.) of 75As displays a Curie-Weiss shift which demonstrates that Mn carries a local magnetic moment. This is confirmed by the main line broadening typical of a RKKY-like Mn-induced staggered spin polarization. The Mn moment is due to the localization of the additional Mn hole. These findings explain why Mn does not induce superconductivity in the pnictides contrary to other dopants such as Co, Ni, Ru or K.Comment: 6 pages, 7 figure

    Microwave Tube Research

    Get PDF
    Contains reports on six research projects
    corecore