51 research outputs found
Nitro-Triarylmethyl Radical as Dual Oxygen and Superoxide Probe
Superoxide radical is involved in numerous physiological and pathophysiological processes. Tetrathiatriarylmethyl (TAM) radicals are knows to react with superoxide allowing measurement of superoxide production in biological media. We report the synthesis of a Nitro conjugated TAM radical showing a rate constant of 7 × 105 M−1s−1 which is two order of magnitude higher than other TAMs allowing high sensitivity measurement of superoxid
Concurrent Longitudinal EPR Monitoring of Tissue Oxygenation, Acidosis, and Reducing Capacity in Mouse Xenograft Tumor Models
Tissue oxygenation, extracellular acidity and tissue reducing capacity are among crucial parameters of tumor microenvironment (TME) of significant importance for tumor pathophysiology. In this paper we demonstrate the complementary application of particulate lithium octa-n-butoxy-naphthalocyanine (LiNc-BuO) and soluble nitroxide (NR) paramagnetic probes for monitoring of these TME parameters using electron paramagnetic resonance (EPR) technique. Two different types of therapeutic interventions were studied: hypothermia and systemic administration of metabolically active drug. In summary, the results demonstrate utility of EPR technique for noninvasive concurrent longitudinal monitoring of physiologically relevant chemical parameters of TME in a mouse xenograft tumor models including that under therapeutic intervention
Tuning the size and composition of manganese oxide nanoparticles through varying temperature ramp and aging time
Manganese oxide (MnO) nanoparticles (NPs) can serve as robust pH-sensitive contrast agents for magnetic resonance imaging (MRI) due to Mn2+ release at low pH, which generates a ~30 fold change in T1 relaxivity. Strategies to control NP size, composition, and Mn2+ dissolution rates are essential to improve diagnostic performance of pH-responsive MnO NPs. We are the first to demonstrate that MnO NP size and composition can be tuned by the temperature ramping rate and aging time used during thermal decomposition of manganese(II) acetylacetonate. Two different temperature ramping rates (10°C/min and 20°C/min) were applied to reach 300°C and NPs were aged at that temperature for 5, 15, or 30 min. A faster ramping rate and shorter aging time produced the smallest NPs of ~23 nm. Shorter aging times created a mixture of MnO and Mn3O4 NPs, whereas longer aging times formed MnO. Our results indicate that a 20°C/min ramp rate with an aging time of 30 min was the ideal temperature condition to form the smallest pure MnO NPs of ~32 nm. However, Mn2+ dissolution rates at low pH were unaffected by synthesis conditions. Although Mn2+ production was high at pH 5 mimicking endosomes inside cells, minimal Mn2+ was released at pH 6.5 and 7.4, which mimic the tumor extracellular space and blood, respectively. To further elucidate the effects of NP composition and size on Mn2+ release and MRI contrast, the ideal MnO NP formulation (~32 nm) was compared with smaller MnO and Mn3O4 NPs. Small MnO NPs produced the highest amount of Mn2+ at acidic pH with maximum T1 MRI signal; Mn3O4 NPs generated the lowest MRI signal. MnO NPs encapsulated within poly(lactide-co-glycolide) (PLGA) retained significantly higher Mn2+ release and MRI signal compared to PLGA Mn3O4 NPs. Therefore, MnO instead of Mn3O4 should be targeted intracellularly to maximize MRI contrast
Development of Multifunctional Overhauser-enhanced Magnetic Rresonance Imaging for Concurrent in Vivo Mapping of Tumor Interstitial Oxygenation, Acidosis and Inorganic Phosphate Concentration
Tumor oxygenation (pO2), acidosis (pH) and interstitial inorganic phosphate concentration (Pi) are important parameters of the malignant behavior of cancer. A noninvasive procedure that enables visualization of these parameters may provide unique information about mechanisms of tumor pathophysiology and provide clues to new treatment targets. In this research, we present a multiparametric imaging method allowing for concurrent mapping of pH, spin probe concentration, pO2, and Pi using a single contrast agent and Overhauser-enhanced magnetic resonance imaging technique. The developed approach was applied to concurrent multifunctional imaging in phantom samples and in vivo in a mouse model of breast cancer. Tumor tissues showed higher heterogeneity of the distributions of the parameters compared with normal mammary gland and demonstrated the areas of significant acidosis, hypoxia, and elevated Pi content
Interstitial Inorganic Phosphate as a Tumor Microenvironment Marker for Tumor Progression
Noninvasive in vivo assessment of chemical tumor microenvironment (TME) parameters such as oxygen (pO2), extracellular acidosis (pHe), and concentration of interstitial inorganic phosphate (Pi) may provide unique insights into biological processes in solid tumors. In this work, we employ a recently developed multifunctional trityl paramagnetic probe and electron paramagnetic resonance (EPR) technique for in vivo concurrent assessment of these TME parameters in various mouse models of cancer. While the data support the existence of hypoxic and acidic regions in TME, the most dramatic differences, about 2-fold higher concentrations in tumors vs. normal tissues, were observed for interstitial Pi - the only parameter that also allowed for discrimination between non-metastatic and highly metastatic tumors. Correlation analysis between [Pi], pO2, pHe and tumor volumes reveal an association of high [Pi] with changes in tumor metabolism and supports different mechanisms of protons and Pi accumulation in TME. Our data identifies interstitial inorganic phosphate as a new TME marker for tumor progression. Pi association with tumor metabolism, buffer-mediated proton transport, and a requirement of high phosphorus content for the rapid growth in the “growth rate hypothesis” may underline its potential role in tumorigenesis and tumor progression
Interstitial Inorganic Phosphate as a Tumor Microenvironment Marker for Tumor Progression
Noninvasive in vivo assessment of chemical tumor microenvironment (TME) parameters such as oxygen (pO2), extracellular acidosis (pHe), and concentration of interstitial inorganic phosphate (Pi) may provide unique insights into biological processes in solid tumors. In this work, we employ a recently developed multifunctional trityl paramagnetic probe and electron paramagnetic resonance (EPR) technique for in vivoconcurrent assessment of these TME parameters in various mouse models of cancer. While the data support the existence of hypoxic and acidic regions in TME, the most dramatic differences, about 2-fold higher concentrations in tumors vs. normal tissues, were observed for interstitial Pi - the only parameter that also allowed for discrimination between non-metastatic and highly metastatic tumors. Correlation analysis between [Pi], pO2, pHe and tumor volumes reveal an association of high [Pi] with changes in tumor metabolism and supports different mechanisms of protons and Pi accumulation in TME. Our data identifies interstitial inorganic phosphate as a new TME marker for tumor progression. Pi association with tumor metabolism, buffer-mediated proton transport, and a requirement of high phosphorus content for the rapid growth in the “growth rate hypothesis” may underline its potential role in tumorigenesis and tumor progression
Google search trends for itch in Europe : a retrospective longitudinal study
Altres ajuts: European Academy of Dermatology and Venereology (EADV, No. 2016-012 to MP).Background: Itch is a common symptom in the general population. Affected individuals often do not seek medical consultation and rely on Internet searches to obtain information regarding their itch. Objectives: The aim of this study was to attain insights into common concerns of the general population regarding itch can by analysing itch-related Internet search behaviour. Methods: Google AdWords Keyword Planner was used to assess search volumes for itch-related terms in 15 European countries between September 2014 and August 2018. All identified keywords were qualitatively categorized. Itch-related terms were descriptively analysed and are shown as number of searches/100 000 inhabitants. Results: The search volume for the keyword 'itch' per 100 000 inhabitants was highest in Northern Europe, followed by Eastern, Central and Southern Europe. In 4/15 countries, itch was searched for more often in the autumn/winter months compared to in the spring/summer months. Most itch-related terms were related to dermatological conditions such as inflammatory skin diseases (e.g. psoriasis, atopic dermatitis), allergic or immunologic conditions (e.g. urticaria), and infectious diseases or infestations (e.g. scabies). In terms of body location, genitoanal itch dominated the searches. Symptoms and signs related to itch, possible non-dermatological aetiologies, and treatment options were also among the most searched terms. Conclusions: These analyses provided for the first time insights into the search behaviour patterns related to itch across Europe. People from Northern and Eastern Europe are more likely to seek online information regarding itch. Causes for the itch, especially dermatological conditions, and genitoanal itch are the most important concerns for Internet users. This unconventional and inexpensive method identifies medical needs of people beyond the medical setting, including people who do not seek medical consultation. Accordingly, the data could be used to guide public health interventions and manage respective inhabitants' medical needs
Triarylmethyl-based biradical as a superoxide probe
Superoxide radical represents one of the most biologically relevant reactive oxygen species involved in numerous physiological and pathophysiological processes. Superoxide measurement through the decay of an EPR signal of a triarylmethyl (TAM) radical possesses the advantage of a high selectivity and relatively high rate constant of TAM reaction with the superoxide. Hereby we report a straightforward synthesis and characterization of a TAM-TAM biradical showing a high reactivity with superoxide (second-order rate constant, (6.7±0.2)·103 M-1 s-1) enabling the measurement of superoxide radical by following the increase of a sharp EPR signal associated with the formation of a TAM-quinone methide monoradical product
In Vivo EPR Assessment of pH, pO2, Redox Status, and Concentrations of Phosphate and Glutathione in the Tumor Microenvironment
This protocol demonstrates the capability of low-field electron paramagnetic resonance (EPR)-based techniques in combination with functional paramagnetic probes to provide quantitative information on the chemical tumor microenvironment (TME), including pO2, pH, redox status, concentrations of interstitial inorganic phosphate (Pi), and intracellular glutathione (GSH). In particular, an application of a recently developed soluble multifunctional trityl probe provides unsurpassed opportunity for in vivo concurrent measurements of pH, pO2 and Pi in Extracellular space (HOPE probe). The measurements of three parameters using a single probe allow for their correlation analyses independent of probe distribution and time of the measurements
Tuning the size and composition of manganese oxide nanoparticles through varying temperature ramp and aging time.
Manganese oxide (MnO) nanoparticles (NPs) can serve as robust pH-sensitive contrast agents for magnetic resonance imaging (MRI) due to Mn2+ release at low pH, which generates a ~30 fold change in T1 relaxivity. Strategies to control NP size, composition, and Mn2+ dissolution rates are essential to improve diagnostic performance of pH-responsive MnO NPs. We are the first to demonstrate that MnO NP size and composition can be tuned by the temperature ramping rate and aging time used during thermal decomposition of manganese(II) acetylacetonate. Two different temperature ramping rates (10°C/min and 20°C/min) were applied to reach 300°C and NPs were aged at that temperature for 5, 15, or 30 min. A faster ramping rate and shorter aging time produced the smallest NPs of ~23 nm. Shorter aging times created a mixture of MnO and Mn3O4 NPs, whereas longer aging times formed MnO. Our results indicate that a 20°C/min ramp rate with an aging time of 30 min was the ideal temperature condition to form the smallest pure MnO NPs of ~32 nm. However, Mn2+ dissolution rates at low pH were unaffected by synthesis conditions. Although Mn2+ production was high at pH 5 mimicking endosomes inside cells, minimal Mn2+ was released at pH 6.5 and 7.4, which mimic the tumor extracellular space and blood, respectively. To further elucidate the effects of NP composition and size on Mn2+ release and MRI contrast, the ideal MnO NP formulation (~32 nm) was compared with smaller MnO and Mn3O4 NPs. Small MnO NPs produced the highest amount of Mn2+ at acidic pH with maximum T1 MRI signal; Mn3O4 NPs generated the lowest MRI signal. MnO NPs encapsulated within poly(lactide-co-glycolide) (PLGA) retained significantly higher Mn2+ release and MRI signal compared to PLGA Mn3O4 NPs. Therefore, MnO instead of Mn3O4 should be targeted intracellularly to maximize MRI contrast
- …