4 research outputs found

    Biochemical Parameters in Tomato Fruits from Different Cultivars as Functional Foods for Agricultural, Industrial, and Pharmaceutical Uses

    Get PDF
    Tomato and tomato based products are an important agricultural production worldwide. More than 80 % of grown tomatoes in the worldwide are processing in the products such as tomato juice, paste, puree, catsup, sauce, and salsa. Tomato fruit is rich in phytochemicals and vitamins. Tomato nutritional value, color, fruit and flavor of their products depends mainly on lycopene, β-carotene, ascorbic acid and sugars and their ratio in fruits. Epidemiological studies and the results associated with the consumption of tomato products against the prevention of chronic diseases such as cancer and cardiovascular disease, confirming the tomato products as a functional food, and show that lycopene and β-carotene acts as an antioxidant. In order to increase the amount of these elements in tomato fruit, it is important to evaluate and investigate tomato genotypes influence to the carotenoids accumulation. Studies have confirmed that the carotenoid content in tomato fruits is determined by genotypic characteristics. In this work the main attention will be focused on from the biochemical and physical properties in tomato of different varieties, chemical and physical properties, to functional properties of supercritical fluid extraction of lycopene from tomato processing by products supercritical fluid tomato extracts

    Variation of Triterpenes in Apples Stored in a Controlled Atmosphere

    No full text
    Apples are seasonal fruits, and thus after harvesting apples of optimal picking maturity, it is important to prepare them properly for storage and to ensure proper storage conditions in order to minimize changes in the chemical composition and commercial quality of the apples. We studied the quantitative composition of triterpenic compounds in the whole apple, apple peel and apple flesh samples before placing them in the controlled atmosphere (CA) chambers, and at the end of the experiment, 8 months later. HPLC analysis showed that highest total amount of triterpenic compounds (1.99 ± 0.01 mg g−1) was found in the whole apple samples of the ‘Spartan’ cultivar stored under variant VIII (O2—20%, CO2—3%, N2—77%) conditions. Meanwhile, the highest amount of triterpenic compounds (11.66 ± 0.72 mg g−1) was determined in the apple peel samples of the ‘Auksis’ cultivar stored under variant II (O2—5%, CO2—1%, N2—94%) conditions. In the apple peel samples of the ‘Auksis’ cultivar stored under variant I (O2—21%, CO2—0.03%, N2—78.97%) conditions, the amount of individual triterpenic compounds (ursolic, oleanolic, corosolic, and betulinic acids) significantly decreased compared with amount determined before the storage. Therefore, in the apple flesh samples determined triterpenic compounds are less stable during the storage under controlled atmosphere conditions compared with triterpenic compounds determined in the whole apple and apple peel samples

    Nutritional and Physicochemical Properties of Wild Lingonberry (<i>Vaccinium vitis-idaea</i> L.)—Effects of Geographic Origin

    No full text
    In recent years, much attention has been devoted to Vaccinium L. berries because of their substantial potential to be adapted for the development of innovative food and pharmaceutical applications. The accumulation of plant secondary metabolites is extremely dependent on climate and other environmental conditions. In order to increase the reliability of the findings, this study was conducted with samples collected in four regions in Northern Europe (Norway, Finland, Latvia, and Lithuania) and analyzed in a single laboratory using a standardized methodology. The study aims to provide a comprehensive understanding of the nutritional (biologically active compounds (phenolic (477–775 mg/100 g fw), anthocyanins (20–57 mg/100 g fw), pro-anthocyanidins (condensed tannins (141–269 mg/100 g fw)) and antioxidant activity in different systems (ABTS•+, FRAP). Physicochemical properties (acidity, soluble solids, color) of wild Vaccinium vitis-idaea L. were also evaluated. The results may contribute to the development of functional foods and nutraceuticals with potential health benefits in the future. To the best of our knowledge, this is the first comprehensive report on the evaluation of the biologically active compounds of wild lingonberries from different Northern European countries based on one laboratory’s validated methods. The results indicated a geomorphological influence on the biochemical and physicochemical composition of wild Vaccinium vitis-idaea L. depending on their place of geographical origin
    corecore