82 research outputs found
Characterisation of PduS, the pdu Metabolosome Corrin Reductase, and Evidence of Substructural Organisation within the Bacterial Microcompartment
PduS is a corrin reductase and is required for the reactivation of the cobalamin-dependent diol dehydratase. It is one component encoded within the large propanediol utilisation (pdu) operon, which is responsible for the catabolism of 1,2-propanediol within a self-assembled proteinaceous bacterial microcompartment. The enzyme is responsible for the reactivation of the cobalamin coenzyme required by the diol dehydratase. The gene for the cobalamin reductase from Citrobacter freundii (pduS) has been cloned to allow the protein to be overproduced recombinantly in E. coli with an N-terminal His-tag. Purified recombinant PduS is shown to be a flavoprotein with a non-covalently bound FMN that also contains two coupled [4Fe-4S] centres. It is an NADH-dependent flavin reductase that is able to mediate the one-electron reductions of cob(III)alamin to cob(II)alamin and cob(II)alamin to cob(I)alamin. The [4Fe-4S] centres are labile to oxygen and their presence affects the midpoint redox potential of flavin. Evidence is presented that PduS is able to bind cobalamin, which is inconsistent with the view that PduS is merely a flavin reductase. PduS is also shown to interact with one of the shell proteins of the metabolosome, PduT, which is also thought to contain an [Fe-S] cluster. PduS is shown to act as a corrin reductase and its interaction with a shell protein could allow for electron passage out of the bacterial microcompartment
Conserved synteny at the protein family level reveals genes underlying Shewanella species’ cold tolerance and predicts their novel phenotypes
© The Authors 2009. This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License. The definitive version was published in Functional & Integrative Genomics 10 (2010): 97-110, doi:10.1007/s10142-009-0142-y.Bacteria of the genus Shewanella can thrive in different environments and demonstrate significant variability in their metabolic and ecophysiological capabilities including cold and salt tolerance. Genomic characteristics underlying this variability across species are largely unknown. In this study, we address the problem by a comparison of the physiological, metabolic, and genomic characteristics of 19 sequenced Shewanella species. We have employed two novel approaches based on association of a phenotypic trait with the number of the trait-specific protein families (Pfam domains) and on the conservation of synteny (order in the genome) of the trait-related genes. Our first approach is top-down and involves experimental evaluation and quantification of the species’ cold tolerance followed by identification of the correlated Pfam domains and genes with a conserved synteny. The second, a bottom-up approach, predicts novel phenotypes of the species by calculating profiles of each Pfam domain among their genomes and following pair-wise correlation of the profiles and their network clustering. Using the first approach, we find a link between cold and salt tolerance of the species and the presence in the genome of a Na+/H+ antiporter gene cluster. Other cold-tolerance-related genes include peptidases, chemotaxis sensory transducer proteins, a cysteine exporter, and helicases. Using the bottom-up approach, we found several novel phenotypes in the newly sequenced Shewanella species, including degradation of aromatic compounds by an aerobic hybrid pathway in Shewanella woodyi, degradation of ethanolamine by Shewanella benthica, and propanediol degradation by Shewanella putrefaciens CN32 and Shewanella sp. W3-18-1.This research was supported by the U.S. Department of Energy (DOE)
Office of Biological and Environmental Research under the Genomics:
GTL Program via the Shewanella Federation consortium
The self-organizing fractal theory as a universal discovery method: the phenomenon of life
A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy
EUSO-SPB1 mission and science
The Extreme Universe Space Observatory on a Super Pressure Balloon 1 (EUSO-SPB1) was launched in 2017 April from Wanaka, New Zealand. The plan of this mission of opportunity on a NASA super pressure balloon test flight was to circle the southern hemisphere. The primary scientific goal was to make the first observations of ultra-high-energy cosmic-ray extensive air showers (EASs) by looking down on the atmosphere with an ultraviolet (UV) fluorescence telescope from suborbital altitude (33 km). After 12 days and 4 h aloft, the flight was terminated prematurely in the Pacific Ocean. Before the flight, the instrument was tested extensively in the West Desert of Utah, USA, with UV point sources and lasers. The test results indicated that the instrument had sensitivity to EASs of ⪆ 3 EeV. Simulations of the telescope system, telescope on time, and realized flight trajectory predicted an observation of about 1 event assuming clear sky conditions. The effects of high clouds were estimated to reduce this value by approximately a factor of 2. A manual search and a machine-learning-based search did not find any EAS signals in these data. Here we review the EUSO-SPB1 instrument and flight and the EAS search
Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors
Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as EUSO-SPB2 and POEMMA, will be able to detect upward-moving extensive air showers induced by decay tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. we calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
Neutrino Target-of-Opportunity Observations with Space-based and Suborbital Optical Cherenkov Detectors
Cosmic-ray accelerators capable of reaching ultra-high energies are expected to also produce very-high energy neutrinos via hadronic interactions within the source or its surrounding environment. Many of the candidate astrophysical source classes are either transient in nature or exhibit flaring activity. Using the Earth as a neutrino converter, suborbital and space-based optical Cherenkov detectors, such as POEMMA and EUSO-SPB2, will be able to detect upward-moving extensive air showers induced by decaying tau-leptons generated from cosmic tau neutrinos with energies ∼10 PeV and above. Both EUSO-SPB2 and POEMMA will be able to quickly repoint, enabling rapid response to astrophysical transient events. We calculate the transient sensitivity and sky coverage for both EUSO-SPB2 and POEMMA, accounting for constraints imposed by the Sun and the Moon on the observation time. We also calculate both detectors\u27 neutrino horizons for a variety of modeled astrophysical neutrino fluences. We find that both EUSO-SPB2 and POEMMA will achieve transient sensitivities at the level of modeled neutrino fluences for nearby sources. We conclude with a discussion of the prospects of each mission detecting at least one transient event for various modeled astrophysical neutrino sources
Simulation studies for the Mini-EUSO detector
Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modeled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyze the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 10 eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterization of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources
Observation of ELVES with Mini-EUSO telescope on board the International Space Station
Mini-EUSO is a detector observing the Earth in the ultraviolet band from the International Space Station through a nadir-facing window, transparent to the UV radiation, in the Russian Zvezda module. Mini-EUSO main detector consists in an optical system with two Fresnel lenses and a focal surface composed of an array of 36 Hamamatsu Multi-Anode Photo-Multiplier tubes, for a total of 2304 pixels, with single photon counting sensitivity. The telescope also contains two ancillary cameras, in the near infrared and visible ranges, to complement measurements in these bandwidths. The instrument has a field of view of 44 degrees, a spatial resolution of about 6.3 km on the Earth surface and of about 4.7 km on the ionosphere. The telescope detects UV emissions of cosmic, atmospheric and terrestrial origin on different time scales, from a few s upwards. On the fastest timescale of 2.5 s, Mini EUSO is able to observe atmospheric phenomena as Transient Luminous Events and in particular the ELVES, which take place when an electromagnetic wave generated by intra-cloud lightning interacts with the ionosphere, ionizing it and producing apparently superluminal expanding rings of several 100 km and lasting about 100 s. These highly energetic fast events have been observed to be produced in conjunction also with Terrestrial Gamma-Ray Flashes and therefore a detailed study of their characteristics (speed, radius, energy ...) is of crucial importance for the understanding of these phenomena. In this paper we present the observational capabilities of ELVE detection by Mini-EUSO and specifically the reconstruction and study of ELVE characteristics
Simulation studies for the Mini-EUSO detector
Mini-EUSO is a mission of the JEM-EUSO program flying onboard the International Space Station since August 2019. Since the first data acquisition in October 2019, more than 35 sessions have been performed for a total of 52 hours of observations. The detector has been observing Earth at night-time in the UV range and detected a wide variety of transient sources all of which have been modelled through Monte Carlo simulations. Mini-EUSO is also capable of detecting meteors and potentially space debris and we performed simulations for such events to estimate their impact on future missions for cosmic ray science from space. We show here examples of the simulation work done in this framework to analyse the Mini-EUSO data. The expected response of Mini-EUSO with respect to ultra high energy cosmic ray showers has been studied. The efficiency curve of Mini-EUSO as a function of primary energy has been estimated and the energy threshold for Cosmic Rays has been placed to be above 10 eV. We compared the morphology of several transient events detected during the mission with cosmic ray simulations and excluded that they can be due to cosmic ray showers. To validate the energy threshold of the detector, a system of ground based flashers is being used for end-to-end calibration purposes. We therefore implemented a parameterisation of such flashers into the JEM-EUSO simulation framework and studied the response of the detector with respect to such sources
The Mini-EUSO telescope on board the International Space Station: Launch and first results
Mini-EUSO is a telescope launched on board the International Space Station in 2019 and currently located in the Russian section of the station.
Main scientific objectives of the mission are the search for nuclearites and Strange Quark Matter, the study of atmospheric phenomena such as Transient Luminous Events, meteors and meteoroids, the observation of sea bioluminescence and of artificial satellites and man-made space debris. It is also capable of observing Extensive Air Showers generated by Ultra-High Energy Cosmic Rays with an energy above 10 eV and detect artificial showers generated with lasers from the ground.
Mini-EUSO can map the night-time Earth in the UV range (290 - 430 nm), with a spatial resolution of about 6.3 km and a temporal resolution of 2.5 μs, observing our planet through a nadir-facing UV-transparent window in the Russian Zvezda module. The instrument, launched on 2019/08/22 from the Baikonur cosmodrome is based on an optical system employing two Fresnel lenses and a focal surface composed of 36 Multi-Anode Photomultiplier tubes, 64 channels each, for a total of 2304 channels with single photon counting sensitivity and an overall field of view of 44°. Mini-EUSO also contains two ancillary cameras to complement measurements in the near infrared and visible ranges. In this paper we describe the detector and present the various phenomena observed in the first year of operation
- …