5 research outputs found

    Acute vasoreactivity testing in pediatric idiopathic pulmonary arterial hypertension:an international survey on current practice

    Get PDF
    The aim of this study was to determine practice patterns and inter-institutional variability in how acute vasoreactivity testing (AVT) is performed and interpreted in pediatrics throughout the world. A survey was offered to physicians affiliated with the Pediatric & Congenital Heart Disease Taskforce of the Pulmonary Vascular Research Institute (PVRI), the Pediatric Pulmonary Hypertension Network (PPHNET), or the Spanish Registry for Pediatric Pulmonary Hypertension (REHIPED), from February to December 2016. The survey requested data about the site-specific protocol for AVT and subsequent management of pediatric patients with idiopathic pulmonary arterial hypertension (IPAH) or heritable PAH (HPAH). Twenty-eight centers from 13 countries answered the survey. AVT is performed in most centers using inhaled nitric oxide (iNO). Sitbon criteria was used in 39% of the centers, Barst criteria in 43%, and other criteria in 18%. First-line therapy for positive AVT responders in functional class (FC) I/II was calcium channel blocker (CCB) in 89%, but only in 68% as monotherapy. Most centers (71%) re-evaluated AVT-positive patients hemodynamics after 6-12 months; 29% of centers re-evaluated based only on clinical criteria. Most centers (64%) considered a good response as remaining in FC I or II, with near normalization of pulmonary arterial pressure and pulmonary vascular resistance, but a stable FC I/II alone was sufficient criteria in 25% of sites. Protocols and diagnostic criteria for AVT, and therapeutic approaches during follow-up, were highly variable across the world. Reported clinical practice is not fully congruent with current guidelines, suggesting the need for additional studies that better define the prognostic value of AVT for pediatric IPAH patients

    The Voice of the Heart: Vowel-Like Sound in Pulmonary Artery Hypertension

    No full text
    Increased blood pressure in the pulmonary artery is referred to as pulmonary hypertension and often is linked to loud pulmonic valve closures. For the purpose of this paper, it was hypothesized that pulmonary circulation vibrations will create sounds similar to sounds created by vocal cords during speech and that subjects with pulmonary artery hypertension (PAH) could have unique sound signatures across four auscultatory sites. Using a digital stethoscope, heart sounds were recorded at the cardiac apex, 2nd left intercostal space (2LICS), 2nd right intercostal space (2RICS), and 4th left intercostal space (4LICS) undergoing simultaneous cardiac catheterization. From the collected heart sounds, relative power of the frequency band, energy of the sinusoid formants, and entropy were extracted. PAH subjects were differentiated by applying the linear discriminant analysis with leave-one-out cross-validation. The entropy of the first sinusoid formant decreased significantly in subjects with a mean pulmonary artery pressure (mPAp) ≥ 25 mmHg versus subjects with a mPAp < 25 mmHg with a sensitivity of 84% and specificity of 88.57%, within a 10-s optimized window length for heart sounds recorded at the 2LICS. First sinusoid formant entropy reduction of heart sounds in PAH subjects suggests the existence of a vowel-like pattern. Pattern analysis revealed a unique sound signature, which could be used in non-invasive screening tools
    corecore