10 research outputs found
Recommended from our members
Fuel cell systems for vehicular applications
The phosphoric acid fuel cell is used as the base line in these evaluations. Two cell sizes (15 and 60 kW) and two fuel options (methanol and propane) are included. Four vehicle types, the city bus, highway bus, delivery van, and general-purpose consumer car are selected for evaluation. Typical drive cycles and economics for these vehicles are compiled, and comparisons are made between the fuel-cell vehicle and current internal-combustion and diesel-engine vehicles. The conclusions of these evaluations are briefly related. Then, the initial results of two aspects of the fuel-cell-powered vehicle evaluation program ongoing at LASL are described. The first part of the program presents the results of detailed computer simulations to illustrate a number of the important system-design considerations in configuring a fuel cell/battery electric vehicle. The next program describes a fuel-cell-powered golf cart currently being used as an engineering test bed. (MCW
Recommended from our members
Optical method for determining the state of charge of a lead-acid battery
An optic device utilizes the index of refraction and critical angle to determine the state of charge of a lead-acid battery
Recommended from our members
Design considerations for vehicular fuel cell power plants
Fuel cells show great promise as an efficient, nonpolluting vehicular power source that can operate on nonpetroleum fuel. As with other power sources, design tradeoffs can be made that either improve vehicle performance or reduce the size and cost of the fuel cell power system. To evaluate some of these tradeoffs, a number of phosphoric acid fuel cell power plant designs have been studied to determine the performance level they would provide, both for a compact passenger vehicle and a 40-ft city bus. The fuel is steam reformed methanol. The analyses indicate that 1978 fuel cell technology can provide a 22 to 50% improvement in fuel economy over the 1980 EPA estimate for the conventionally powered General Motors X car. With this technology the city bus can meet the DOT acceleration, gradability, and top speed requirements. A reasonable advance in fuel cell technology improves performance and fuel consumption of both vehicles substantially
Determination of vehicle rolling resistance and aerodynamic drag
The retarding forces on a vehicle are characterized by rolling resistance and aerodynamic drag. These forces determine power requirements for a specified vehicle performance (particularly important for an electric vehicle) and are necessary inputs for any vehicle simulation. Both rolling resistance and aerodynamic drag are determined for a number of vehicles and the testing and data analysis techniques are described
Recommended from our members
Application of fuel cells to highway and nonhighway transportation
Transportation is the nation's largest single energy user and accounts for approximately 50% of our current petroleum consumption. This fact not only defines the urgency of the problem, it also delineates the magnitude of the infrastructure already in place and the built-in inertia of the system. Major changes in our modes of transportation will not take place instantly, as we might wish, but will certainly require years and, perhaps, decades of steady evolution and technological development. Fuel cells are a promising alternate power source for transportation applications for a number of reasons. Modeling studies have indicated the potential for providing highway vehicles with performance and range comparable to those provided by internal combustion engines. Fuel cells are efficient and therefore reduce energy consumption. They are nonpolluting in terms of both air and noise pollution - highly desirable features for urban applications. In addition, they can operate on nonpetroleum fuels such as hydrogen or hydrogen in combined form, for example, methanol or ammonia, thereby reducing the nation's petroleum dependency. The investigation of the application of fuel cells to the highway transportation described began in 1977. Recently, the scope was broadened to include a determination of the feasibility of using fuel cells in nonhighway transportation, i.e., rail and marine