20 research outputs found
Finite-key analysis on the 1-decoy state QKD protocol
It has been shown that in the asymptotic case of infinite-key length the
2-decoy state QKD protocol outperforms the 1-decoy state protocol. Here, we
present a finite-key analysis of the 1-decoy method. Interestingly, we find
that for practical block sizes of up to bits, the 1-decoy protocol
achieves for almost all experimental settings higher secret key rates than the
2-decoy protocol. Since using only one decoy is also easier to implement, we
conclude that it is the best choice for practical QKD.Comment: 6 pages, 7 figures, Pape
Performance and security of 5 GHz repetition rate polarization-based Quantum Key Distribution
We present and characterize a source for a 5 GHz clocked polarization-based
simplified BB84 protocol. Secret keys are distributed over 151.5 km of standard
telecom fiber at a rate of 54.5 kbps. Potentially, an increased clock frequency
of the experiment introduces correlations between succeeding pulses. We discuss
the impact of these correlations and propose measurements to estimate the
relevant parameters.Comment: 5 pages, 3 figures, submitted to Applied Physics Letter
Detector-device-independent QKD: security analysis and fast implementation
One of the most pressing issues in quantum key distribution (QKD) is the
problem of detector side- channel attacks. To overcome this problem,
researchers proposed an elegant "time-reversal" QKD protocol called
measurement-device-independent QKD (MDI-QKD), which is based on time-reversed
entanglement swapping. However, MDI-QKD is more challenging to implement than
standard point- to-point QKD. Recently, an intermediary QKD protocol called
detector-device-independent QKD (DDI-QKD) has been proposed to overcome the
drawbacks of MDI-QKD, with the hope that it would eventually lead to a more
efficient detector side-channel-free QKD system. Here, we analyze the security
of DDI-QKD and elucidate its security assumptions. We find that DDI-QKD is not
equivalent to MDI-QKD, but its security can be demonstrated with reasonable
assumptions. On the more practical side, we consider the feasibility of DDI-QKD
and present a fast experimental demonstration (clocked at 625 MHz), capable of
secret key exchange up to more than 90 km.Comment: 9 pages, 4 figure
Simple and high-speed polarization-based QKD
We present a simplified BB84 protocol with only three quantum states and one
decoy-state level. We implement this scheme using the polarization degree of
freedom at telecom wavelength. Only one pulsed laser is used in order to reduce
possible side-channel attacks. The repetition rate of 625 MHz and the achieved
secret bit rate of 23 bps over 200 km of standard fiber are the actual state of
the art
Security proof for a simplified BB84-like QKD protocol
The security of quantum key distribution (QKD) has been proven for different
protocols, in particular for the BB84 protocol. It has been shown that this
scheme is robust against eventual imperfections in the state preparation, and
sending only three different states delivers the same secret key rate
achievable with four states. In this work, we prove, in a finite-key scenario,
that the security of this protocol can be maintained even with less measurement
operators on the receiver. This allows us to implement a time-bin encoding
scheme with a minimum amount of resources
Simple 2.5 GHz time-bin quantum key distribution
We present a 2.5 GHz quantum key distribution setup with the emphasis on a
simple experimental realization. It features a three-state time-bin protocol
based on a pulsed diode laser and a single intensity modulator. Implementing an
efficient one-decoy scheme and finite-key analysis, we achieve record breaking
secret key rates of 1.5 kbps over 200 km of standard optical fiber
High-speed integrated QKD system
Quantum key distribution (QKD) is nowadays a well established method for
generating secret keys at a distance in an information-theoretic secure way, as
the secrecy of QKD relies on the laws of quantum physics and not computational
complexity. In order to industrialize QKD, low-cost, mass-manufactured and
practical QKD setups are required. Hence, photonic and electronic integration
of the sender's and receiver's respective components is currently in the
spotlight. Here we present a high-speed (2.5 GHz) integrated QKD setup
featuring a transmitter chip in silicon photonics allowing for high-speed
modulation and accurate state preparation, as well as a
polarization-independent low-loss receiver chip in aluminum borosilicate glass
fabricated by the femtosecond laser micromachining technique. Our system
achieves raw bit error rates, quantum bit error rates and secret key rates
equivalent to a much more complex state-of-the-art setup based on discrete
components
Fast Single Photon Detectors and real-time Key Distillation: Enabling High Secret Key Rate QKD Systems
Quantum Key Distribution has made continuous progress over the last 20 years
and is now commercially available. However, the secret key rates (SKR) are
still limited to a few Mbps. Here, we present a custom multipixel
superconducting nanowire single-photon detectors and fast acquisition and
real-time key distillation electronics, removing two roadblocks and allowing an
increase of the SKR of more than an order of magnitude. In combination with a
simple 2.5 GHz clocked time-bin quantum key distribution system, we can
generate secret keys at a rate of 64 Mbps over a distance of 10.0 km and at a
rate of 3.0 Mbps over a distance of 102.4 km with real-time key distillation.Comment: 5 pages, 5 figures, submitted to Nature Photonic
Long-distance and high-speed quantum key distribution
Depuis son invention en 1984, la distribution de clé quantique (QKD) a effectué d'énormes progrès techniques qui ont notamment permis sa réalisation sur des réseaux de télécommunication ou encore entre un satellite et une station terrestre. Au cours de cette thèse, j'ai réalisé diverses expériences dans le but d'améliorer les performances de la QKD, en termes de taux de répétition et de praticité d'utilisation, mais surtout en termes de distance maximale et de taux de clés secrètes. La partie centrale de mon travail repose sur la réalisation d'une plateforme de QKD à grande vitesse basée sur un encodage en time-bin ayant un taux de répétition de 2.5 GHz. L'utilisation d'un protocole BB84 simplifié a permis d'obtenir un dispositif expérimental simple, comprenant notamment un unique modulateur électro-optique ainsi qu'un appareil de détection entièrement passif et comprenant seulement deux détecteurs de photons uniques. Ce dispositif a permis tout d'abord d'effectuer une expérience à longue distance. En le couplant à des détecteurs supraconducteurs combinant faible taux de bruit et haute efficacité de détection, il a été possible d'échanger des clés quantiques jusqu'à une distance record de 421 km de fibre optique. J'ai par ailleurs démontré la capacité du système à fonctionner avec des photodiodes à photon unique. Enfin, j'ai investigué le régime de fonctionnement à basse atténuation et haut taux de détection. Des taux de clés secrètes approchant 10 Mbps ont été obtenus, ce qui correspond à l'état de l'art actuel. De futures améliorations sont proposées en vue d'augmenter ces performances. J'ai également étudié la QKD basée sur la polarisation à l'aide d'une source d'états BB84 encodés en polarisation avec un taux de répétition de 625 MHz. Cette source a permis la réalisation d'un système BB84 complet capable d'obtenir des taux de clés secrètes de 23 bps à une distance de 200 km. Elle a également été utilisée dans une implémentation à haute vitesse du protocole detector-device-independent. Ce travail comprend une analyse détaillée de la sécurité de ce dernier
The limits of multiplexing quantum and classical channels: Case study of a 2.5 GHz discrete variable quantum key distribution system
Network integration of quantum key distribution is crucial for its future widespread deployment due to the high cost of using optical fibers dedicated for the quantum channel only. We studied the performance of a system running a simplified BB84 protocol at 2.5 GHz repetition rate, operating in the original wavelength band, the short O-band, when multiplexed with communication channels in the conventional wavelength band, and the short C-band. Our system could successfully generate secret keys over a single-mode fiber with a length of 95.5 km and with co-propagating classical signals at a launch power of 8.9 dBm. Furthermore, we discuss the performance of an ideal system under the same conditions, showing the limits of what is possible with a discrete variable system in the O-band. We also considered a short and lossy link with 51 km optical fiber resembling a real link in a metropolitan area network. In this scenario, we could exchange a secret key with a launch power up to 16.7 dBm in the classical channels