812 research outputs found

    Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction

    Get PDF
    Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson {\it et al.} [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fan-like electron outflow region including three well-collimated electron jets appears. The (>1>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS

    Adaptive Distributed Kernel Ridge Regression: A Feasible Distributed Learning Scheme for Data Silos

    Full text link
    Data silos, mainly caused by privacy and interoperability, significantly constrain collaborations among different organizations with similar data for the same purpose. Distributed learning based on divide-and-conquer provides a promising way to settle the data silos, but it suffers from several challenges, including autonomy, privacy guarantees, and the necessity of collaborations. This paper focuses on developing an adaptive distributed kernel ridge regression (AdaDKRR) by taking autonomy in parameter selection, privacy in communicating non-sensitive information, and the necessity of collaborations in performance improvement into account. We provide both solid theoretical verification and comprehensive experiments for AdaDKRR to demonstrate its feasibility and effectiveness. Theoretically, we prove that under some mild conditions, AdaDKRR performs similarly to running the optimal learning algorithms on the whole data, verifying the necessity of collaborations and showing that no other distributed learning scheme can essentially beat AdaDKRR under the same conditions. Numerically, we test AdaDKRR on both toy simulations and two real-world applications to show that AdaDKRR is superior to other existing distributed learning schemes. All these results show that AdaDKRR is a feasible scheme to defend against data silos, which are highly desired in numerous application regions such as intelligent decision-making, pricing forecasting, and performance prediction for products.Comment: 46pages, 13figure

    Lifting the Veil: Unlocking the Power of Depth in Q-learning

    Full text link
    With the help of massive data and rich computational resources, deep Q-learning has been widely used in operations research and management science and has contributed to great success in numerous applications, including recommender systems, supply chains, games, and robotic manipulation. However, the success of deep Q-learning lacks solid theoretical verification and interpretability. The aim of this paper is to theoretically verify the power of depth in deep Q-learning. Within the framework of statistical learning theory, we rigorously prove that deep Q-learning outperforms its traditional version by demonstrating its good generalization error bound. Our results reveal that the main reason for the success of deep Q-learning is the excellent performance of deep neural networks (deep nets) in capturing the special properties of rewards namely, spatial sparseness and piecewise constancy, rather than their large capacities. In this paper, we make fundamental contributions to the field of reinforcement learning by answering to the following three questions: Why does deep Q-learning perform so well? When does deep Q-learning perform better than traditional Q-learning? How many samples are required to achieve a specific prediction accuracy for deep Q-learning? Our theoretical assertions are verified by applying deep Q-learning in the well-known beer game in supply chain management and a simulated recommender system
    corecore