4 research outputs found

    Microstructure and Wear Properties of Micro Arc Oxidation Ceramic Coatings

    No full text
    The interaction effect of micro arc oxidation (MAO) parameters on the microstructure and wear properties was investigated. The results showed that the electric current and oxidation time significantly influenced the thickness and grinding crack width of the ceramic coatings within the range of the selected parameters, and the interaction effect of the electrical parameters was not obvious. The surface morphology, cross-section morphology, and element distribution of the coatings were observed using scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The results showed that ceramic coatings with γ-Al2O3 and α-Al2O3 formed, which enhanced the coating performance. After that, the microhardness and wear resistance were tested. Under the optimal process, the microhardness of a coating section was up to 1200 HV0.1, and the friction coefficient was just 0.3. When wear occurred, the volcanic microstructures experienced extrusion and deformation, and then peeled off under shear stress, which led to the formation of a grinding crack. The main failure modes of the micro arc oxidation coatings were abrasive wear and spalling failure

    Controlled Growth of Large‐Sized and Phase‐Selectivity 2D GaTe Crystals

    No full text
    GaTe has recently attracted significant interest due to its direct bandgap and unique phase structure, which makes it a good candidate for optoelectronics. However, the controllable growth of large-sized monolayer and few-layer GaTe with tunable phase structures remains a great challenge. Here the controlled growth of large-sized GaTe with high quality, chemical uniformity, and good reproducibility is achieved through liquid-metal-assisted chemical vapor deposition method. By using liquid Ga, the rapid growth of 2D GaTe flakes with high phase-selectivity can be obtained due to its reduced reaction temperature. In addition, the method is used to synthesize many Ga-based 2D materials and their alloys, showing good universality. Raman spectra suggest that the as-grown GaTe own a relatively weak van der Waals interaction, where monoclinic GaTe displays highly-anisotropic optical properties. Furthermore, a p-n junction photodetector is fabricated using GaTe as a p-type semiconductor and 2D MoSe2 as a typical n-type semiconductor. The GaTe/MoSe2 heterostructure photodetector exhibits large photoresponsivity of 671.52 A W-1 and high photo-detectivity of 1.48 × 1010 Jones under illumination, owing to the enhanced light absorption and good quality of as-grown GaTe. These results indicate that 2D GaTe is a promising candidate for electronic and photoelectronic devices.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)National Research Foundation (NRF)This research was supported by Fund of National Key Laboratory of Science and Technology on Advanced Composites in Special Environments (Grant No. 6142905192507), Shenzhen Science and Technology Plan Supported Project (Grant Nos. JCYJ20170413105844696, KQJSCX20170726104440871), China Scholarship Council (Grant No. 201606125092) and A*STAR under its AME IRG Grant (Project No. 19283074). Z.L. also acknowledges the support from National Research Foundation Singapore Programme (NRF-CRP21-2018-0007 and NRF-CRP22-2019-0007), Singapore Ministry of Education via AcRF Tier 3 (MOE2018-T3-1-002), AcRF Tier 2 (MOE2016-T2-1-131), and AcRF Tier 1 RG4/17 and RG7/18
    corecore