5,285 research outputs found
Towards Understanding Astrophysical Effects of Nuclear Symmetry Energy
Determining the Equation of State (EOS) of dense neutron-rich nuclear matter
is a shared goal of both nuclear physics and astrophysics. Except possible
phase transitions, the density dependence of nuclear symmetry \esym is the most
uncertain part of the EOS of neutron-rich nucleonic matter especially at
supra-saturation densities. Much progresses have been made in recent years in
predicting the symmetry energy and understanding why it is still very uncertain
using various microscopic nuclear many-body theories and phenomenological
models. Simultaneously, significant progresses have also been made in probing
the symmetry energy in both terrestrial nuclear laboratories and astrophysical
observatories. In light of the GW170817 event as well as ongoing or planned
nuclear experiments and astrophysical observations probing the EOS of dense
neutron-rich matter, we review recent progresses and identify new challenges to
the best knowledge we have on several selected topics critical for
understanding astrophysical effects of the nuclear symmetry energy.Comment: 77 pages. Invited Review Article, EPJA (2019) in pres
Low Mass Dark Matter and Invisible Higgs Width In Darkon Models
The Standard Model (SM) plus a real gauge-singlet scalar field dubbed darkon
(SM+D) is the simplest model possessing a weakly interacting massive particle
(WIMP) dark-matter candidate. In this model, the parameters are constrained
from dark matter relic density and direct searches. The fact that interaction
between darkon and SM particles is only mediated by Higgs boson exchange may
lead to significant modifications to the Higgs boson properties. If the dark
matter mass is smaller than a half of the Higgs boson mass, the Higgs boson can
decay into a pair of darkons resulting in a large invisible branching ratio.
The Higgs boson will be searched for at the LHC and may well be discovered in
the near future. If a Higgs boson with a small invisible decay width will be
found, the SM+D model with small dark matter mass will be in trouble. We find
that by extending the SM+D to a two-Higgs-doublet model plus a darkon (THDM+D)
it is possible to have a Higgs boson with a small invisible branching ratio and
at the same time the dark matter can have a low mass. We also comment on other
implications of this model.Comment: RevTeX, 15 pages, 11 figures. A few typos corrected and some
references adde
Data-driven analysis methods for the measurement of reconstructed jets in heavy ion collisions at RHIC and LHC
We present data-driven methods for the full reconstruction of jets in heavy
ion collisions, for inclusive and co-incidence jet measurements at both RHIC
and LHC. The complex structure of heavy ion events generates a large background
of combinatorial jets, and smears the measured energy of the true hard jet
signal. Techniques to correct for these background effects can induce biases in
the reported jet distributions, which must be well controlled for accurate
measurement of jet quenching. Using model studies, we evaluate the proposed
methods for measuring jet distributions accurately while minimizing the
fragmentation bias of the measured population.Comment: 5 pages, 14 figures, Hard Probe 2012 Conference Proceedin
5-axis double-flank CNC machining of spiral bevel gears via custom-shaped tools – Part II: physical validations and experiments
Recently, a new methodology for 5-axis flank computer numerically controlled (CNC) machining, called double-flank machining,
has been introduced (see “5-axis double-flank CNC machining of spiral bevel gears via custom-shaped milling tools–Part I: Modeling and simulation”). Certain geometries, such as curved teeth of spiral bevel gear, admit this approach where the machining tool has tangential contact with the material block on two sides, yielding a more efficient variant of flank machining. To achieve high machining accuracy, the path-planning algorithm, however, does not look only for the path of the tool, but also for the shape of the tool itself. The proposed approach is validated by series of physical experiments using an abrasive custom-shaped tool specifically designed for a particular type of a spiral bevel gear. The potential of this new methodology is shown in the semifinishing stage of gear manufacturing, where it outperforms traditional ball end milling by an order of magnitude in terms of machining time, while keeping, or even improving, the machining error.RYC-2017-22649
KK-2020/0010
Design of a low band gap oxide ferroelectric: BiTiO
A strategy for obtaining low band gap oxide ferroelectrics based on charge
imbalance is described and illustrated by first principles studies of the
hypothetical compound BiTiO, which is an alternate stacking of
the ferroelectric BiTiO. We find that this compound is
ferroelectric, similar to BiTiO although with a reduced
polarization. Importantly, calculations of the electronic structure with the
recently developed functional of Tran and Blaha yield a much reduced band gap
of 1.83 eV for this material compared to BiTiO. Therefore,
BiTiO is predicted to be a low band gap ferroelectric material
Developing Central Nervous System and Vulnerability to Platinum Compounds
Comparative studies on the effects of the platinum complexes in use or in clinical trials are carried out in order to discover differences in the neurotoxic potential and the reversibility of neurotoxicity. In this paper, we summarized the current literature on neurotoxicity and chemoresistance of cisplatin (cisPt) and discussed our recent efforts on the interference of cisPt and a new platinum compound [Pt(O,O′-acac)(γ-acac)(DMS)] (PtAcacDMS), with high specific reactivity with sulphur ligands instead of nucleobases as cisPt, on some crucial events of rat postnatal cerebellum development. The acute effects of drug treatments on cell proliferation and death in the external granular layer and granule cell migration and the late effects on the dendrite growth of Purkinje cells were evaluated. Together with the demonstrated antineoplastic effectiveness in vitro, compared with cisPt, data suggest a lower neurotoxicity of PtAcacDMS, in spite of its presence in the brain that involves considerations on the blood brain barrier permeability
Design, motion-planning, and manufacturing of custom-shaped tools for 5-axis super abrasive machining of a turbomachinary blade like component
Free-form surfaces generated by Non-Uniform Rational B-Splines (NURBS) are evolving to face turbomachinery components requirements, such as turbine blades to enhanced efficiency. Super Abrasive Machining (SAM) is presented as a potential process for high-added value components using custom-shaped tools to be adapted to any surface. The adaptability and flexibility of these tool concepts are specifically designed to fit these complex surfaces. This paper presents an innovative manufacturing approach for blade type components using a custom-shaped tool designed through an optimization process that simultaneously optimizes both the shape of the tool and its motion. The proposed method with SAM finishing using a custom-shaped tool is compared
against a standard tool and traditional machining process. The result obtained on the blade test case show that the custom-shaped tools need fewer paths, yet produce more accurate surface finish
Topological Charge Evolution in the Markov-Chain of QCD
The topological charge is studied on lattices of large physical volume and
fine lattice spacing. We illustrate how a parity transformation on the SU(3)
link-variables of lattice gauge configurations reverses the sign of the
topological charge and leaves the action invariant. Random applications of the
parity transformation are proposed to traverse from one topological charge sign
to the other. The transformation provides an improved unbiased estimator of the
ensemble average and is essential in improving the ergodicity of the Markov
chain process.Comment: 4 pages, 2 figure
- …