140 research outputs found

    Stochastic Collapsed Variational Inference for Sequential Data

    Full text link
    Stochastic variational inference for collapsed models has recently been successfully applied to large scale topic modelling. In this paper, we propose a stochastic collapsed variational inference algorithm in the sequential data setting. Our algorithm is applicable to both finite hidden Markov models and hierarchical Dirichlet process hidden Markov models, and to any datasets generated by emission distributions in the exponential family. Our experiment results on two discrete datasets show that our inference is both more efficient and more accurate than its uncollapsed version, stochastic variational inference.Comment: NIPS Workshop on Advances in Approximate Bayesian Inference, 201

    Modelling the Lexicon in Unsupervised Part of Speech Induction

    Full text link
    Automatically inducing the syntactic part-of-speech categories for words in text is a fundamental task in Computational Linguistics. While the performance of unsupervised tagging models has been slowly improving, current state-of-the-art systems make the obviously incorrect assumption that all tokens of a given word type must share a single part-of-speech tag. This one-tag-per-type heuristic counters the tendency of Hidden Markov Model based taggers to over generate tags for a given word type. However, it is clearly incompatible with basic syntactic theory. In this paper we extend a state-of-the-art Pitman-Yor Hidden Markov Model tagger with an explicit model of the lexicon. In doing so we are able to incorporate a soft bias towards inducing few tags per type. We develop a particle filter for drawing samples from the posterior of our model and present empirical results that show that our model is competitive with and faster than the state-of-the-art without making any unrealistic restrictions.Comment: To be presented at the 14th Conference of the European Chapter of the Association for Computational Linguistic

    Language as a Latent Variable: Discrete Generative Models for Sentence Compression

    Full text link
    In this work we explore deep generative models of text in which the latent representation of a document is itself drawn from a discrete language model distribution. We formulate a variational auto-encoder for inference in this model and apply it to the task of compressing sentences. In this application the generative model first draws a latent summary sentence from a background language model, and then subsequently draws the observed sentence conditioned on this latent summary. In our empirical evaluation we show that generative formulations of both abstractive and extractive compression yield state-of-the-art results when trained on a large amount of supervised data. Further, we explore semi-supervised compression scenarios where we show that it is possible to achieve performance competitive with previously proposed supervised models while training on a fraction of the supervised data.Comment: EMNLP 201

    Multilingual Models for Compositional Distributed Semantics

    Full text link
    We present a novel technique for learning semantic representations, which extends the distributional hypothesis to multilingual data and joint-space embeddings. Our models leverage parallel data and learn to strongly align the embeddings of semantically equivalent sentences, while maintaining sufficient distance between those of dissimilar sentences. The models do not rely on word alignments or any syntactic information and are successfully applied to a number of diverse languages. We extend our approach to learn semantic representations at the document level, too. We evaluate these models on two cross-lingual document classification tasks, outperforming the prior state of the art. Through qualitative analysis and the study of pivoting effects we demonstrate that our representations are semantically plausible and can capture semantic relationships across languages without parallel data.Comment: Proceedings of ACL 2014 (Long papers

    Compositional Morphology for Word Representations and Language Modelling

    Full text link
    This paper presents a scalable method for integrating compositional morphological representations into a vector-based probabilistic language model. Our approach is evaluated in the context of log-bilinear language models, rendered suitably efficient for implementation inside a machine translation decoder by factoring the vocabulary. We perform both intrinsic and extrinsic evaluations, presenting results on a range of languages which demonstrate that our model learns morphological representations that both perform well on word similarity tasks and lead to substantial reductions in perplexity. When used for translation into morphologically rich languages with large vocabularies, our models obtain improvements of up to 1.2 BLEU points relative to a baseline system using back-off n-gram models.Comment: Proceedings of the 31st International Conference on Machine Learning (ICML
    • …
    corecore