511 research outputs found

    Radiative corrections and parity-violating electron-nucleon scattering

    Get PDF
    Radiative corrections to the parity-violating asymmetry measured in elastic electron-proton scattering are analyzed in the framework of the Standard Model. We include the complete set of one-loop contributions to one quark current amplitudes. The contribution of soft photon emission to the asymmetry is also calculated, giving final results free of infrared divergences. The one quark radiative corrections, when combined with previous work on many quark effects and recent SAMPLE experimental data, are used to place some new constraints on electroweak form factors of the nucleon

    Δ\Delta resonance contribution to two-photon exchange in electron-proton scattering

    Full text link
    We calculate the effects on the elastic electron-proton scattering cross section of the two-photon exchange contribution with an intermediate Δ\Delta resonance. The Δ\Delta two-photon exchange contribution is found to be smaller in magnitude than the previously evaluated nucleon contribution, with an opposite sign at backward scattering angles. The sum of the nucleon and Δ\Delta two-photon exchange corrections has an angular dependence compatible with both the polarisation transfer and the Rosenbluth methods of measuring the nucleon electromagnetic form factors.Comment: 9 pages, 3 figures, RevTeX4; more complete discussion of results, conclusions unchanged; to be published in Physical Review Letter

    Light Front Nuclear Physics: Toy Models, Static Sources and Tilted Light Front Coordinates

    Full text link
    The principles behind the detailed results of a light-front mean field theory of finite nuclei are elucidated by deriving the nucleon mode equation using a simple general argument, based on the idea that a static source in equal time coordinates corresponds to a moving source in light front coordinates. This idea also allows us to solve several simple toy model examples: scalar field in a box, 1+1 dimensional bag model, three-dimensional harmonic oscillator and the Hulth\'en potential. The latter provide simplified versions of momentum distributions and form factors of relevance to experiments. In particular, the relativistic correction to the mean square radius of a nucleus is shown to be very small. Solving these simple examples suggests another more general approach-- the use of tilted light front coordinates. The simple examples are made even simpler.Comment: 19 pages, references adde

    The Rarita-Schwinger spin-3/2 equation in a nonuniform, central potential

    Get PDF
    The equations of motion for a massive spin-3/2 Rarita-Schwinger field in a finite-range, central, Lorentz scalar potential are developed. It is shown that the resulting density may not be everywhere positive definite.Comment: 9 pages, RevTe

    Computational Model for Electron-Nucleon Scattering and Weak Charge of the Nucleon

    Full text link
    We show how computational symbolic packages such as FeynArts and FormCalc can be adopted for the evaluation of one-loop hadronic electroweak radiative corrections for electron-nucleon scattering and applied to calculations of the nucleon weak charge. Several numerical results are listed, and found to be in good agreement with the current experimental data.Comment: 13 pages, 8 figures, results unchanged, minor corrections in the appendi

    Quark-meson coupling model for finite nuclei

    Full text link
    A Quark-Meson Coupling (QMC) model is extended to finite nuclei in the relativistic mean-field or Hartree approximation. The ultra-relativistic quarks are assumed to be bound in non-overlapping nucleon bags, and the interaction between nucleons arises from a coupling of vector and scalar meson fields to the quarks. We develop a perturbative scheme for treating the spatial nonuniformity of the meson fields over the volume of the nucleon as well as the nucleus. Results of calculations for spherical nuclei are given, based on a fit to the equilibrium properties of nuclear matter. Several possible extensions of the model are also considered.Comment: 33 pages REVTeX plus 2 postscript figure

    Mean-field calculations of quasi-elastic responses in 4He

    Full text link
    We present calculations of the quasi-elastic responses functions in 4He based upon a mean-field model used to perform analogous calculations in heavier nuclei. The meson exchange current contribution is small if compared with the results of calculations where short-range correlations are explicitly considered. It is argued that the presence of these correlations in the description of the nuclear wave functions is crucial to make meson exchange current effects appreciable.Comment: uuencoded file containing 7 LaTex peges plus 3 ps figures. To be published in Physical Review

    Light-Front Nuclear Physics: Mean Field Theory for Finite Nuclei

    Get PDF
    A light-front treatment for finite nuclei is developed from a relativistic effective Lagrangian (QHD1) involving nucleons, scalar mesons and vector mesons. We show that the necessary variational principle is a constrained one which fixes the expectation value of the total momentum operator P+P^+ to be the same as that for P−P^-. This is the same as minimizing the sum of the total momentum operators: P−+P+P^-+P^+. We obtain a new light-front version of the equation that defines the single nucleon modes. The solutions of this equation are approximately a non-trivial phase factor times certain solutions of the usual equal-time Dirac equation. The ground state wave function is treated as a meson-nucleon Fock state, and the meson fields are treated as expectation values of field operators in that ground state. The resulting equations for these expectation values are shown to be closely related to the usual meson field equations. A new numerical technique to solve the self-consistent field equations is introduced and applied to 16^{16}O and 40^{40}Ca. The computed binding energies are essentially the same as for the usual equal-time theory. The nucleon plus momentum distribution (probability for a nucleon to have a given value of p+p^+) is obtained, and peaks for values of p+p^+ about seventy percent of the nucleon mass. The mesonic component of the ground state wave function is used to determine the scalar and vector meson momentum distribution functions, with a result that the vector mesons carry about thirty percent of the nuclear plus-momentum. The vector meson momentum distribution becomes more concentrated at p+=0p^+=0 as AA increases.Comment: 36 pages, 2 figure

    Light-Front Bethe-Salpeter Equation

    Get PDF
    A three-dimensional reduction of the two-particle Bethe-Salpeter equation is proposed. The proposed reduction is in the framework of light-front dynamics. It yields auxiliary quantities for the transition matrix and the bound state. The arising effective interaction can be perturbatively expanded according to the number of particles exchanged at a given light-front time. An example suggests that the convergence of the expansion is rapid. This result is particular for light-front dynamics. The covariant results of the Bethe-Salpeter equation can be recovered from the corresponding auxiliary three-dimensional ones. The technical procedure is developed for a two-boson case; the idea for an extension to fermions is given. The technical procedure appears quite practicable, possibly allowing one to go beyond the ladder approximation for the solution of the Bethe-Salpeter equation. The relation between the three-dimensional light-front reduction of the field-theoretic Bethe-Salpeter equation and a corresponding quantum-mechanical description is discussed.Comment: 42 pages, 5 figure

    The Off Shell ρ\rho-ω\omega Mixing in the QCD Sum Rules

    Full text link
    The q2q^2 dependence of the ρ−ω\rho-\omega mixing amplitude is analyzed with the use of the QCD sum rules and the dispersion relation. Going off shell the mixing decreases, changes sign at q2≃0.4mρ2>0q^2 \simeq 0.4 m_{\rho}^2 > 0 and is negative in the space like region. Implications of this result to the isospin breaking part of the nuclear force are discussed.Comment: 26 pages + 11 figures (PostScript
    • 

    corecore