616 research outputs found

    Quark-hadron duality constraints on \gamma Z box corrections to parity-violating elastic scattering

    Full text link
    We examine the interference \gamma Z box corrections to parity-violating elastic electron--proton scattering in the light of the recent observation of quark-hadron duality in parity-violating deep-inelastic scattering from the deuteron, and the approximate isospin independence of duality in the electromagnetic nucleon structure functions down to Q^2 \approx 1 GeV^2. Assuming that a similar behavior also holds for the \gamma Z proton structure functions, we find that duality constrains the \gamma Z box correction to the proton's weak charge to be \Re e\, \square_{\gamma Z}^V = (5.4 \pm 0.4) \times 10^{-3} at the kinematics of the Q_{\text{weak}} experiment. Within the same model we also provide estimates of the \gamma Z corrections for future parity-violating experiments, such as MOLLER at Jefferson Lab and MESA at Mainz.Comment: 10 pages, 3 figures. Final version to be published in Phys. Lett.

    Does sleep education change sleep parameters? Comparing sleep education trials for middle school students in Australia and New Zealand

    Full text link
    Background: Adolescents suffer daytime consequences from sleep loss. Sleep education programs have been developed in an attempt to increase sleep knowledge and/or duration. This paper presents data from three trials of the Aus-tralian Centre for Education in Sleep (ACES) program for adolescents.Methods: The ACES program was delivered to 69 Australian adolescents in a pre-post cross-sectional design (mean age 15.2) and 29 New Zealand adolescents in a randomised control trial (mean age 14.8 years). Assessments in sleep parame-ters were undertaken at baseline and post intervention.Results: Where sleep knowledge was evaluated (Australian trials), significant improvements were shown in all trials (All p <0.05). Where sleep duration was assessed (New Zealand trial) significant improvements were found in week and weekend sleep duration [F(1, 27)=4.26, p=0.04). Both, students and teachers found the program feasible, interesting, and educational.Conclusions: ACES sleep education programmes can improve both sleep knowledge and sleep duration in adolescents. Improving the programme so sleep knowledge attained equates to actual sleep behaviour change are areas for future direc-tion. Collectively these findings provide encouraging signs that adolescents can improve their sleep knowledge and behav-iour with sleep education which bodes well for sleep-related health and psycho-social issues

    Modern nucleon-nucleon interactions and charge-symmetry breaking in nuclei

    Full text link
    Coulomb displacement energies, i.e., the differences between the energies of corresponding nuclear states in mirror nuclei, are evaluated using recent models for the nucleon-nucleon (NN) interaction. These modern NN potentials account for breaking of isospin symmetry and reproduce pppp and pnpn phase shifts accurately. The predictions by these new potentials for the binding of 16O^{16}O are calculated. A particular focus of our study are effects due to nuclear correlations and charge-symmetry breaking (CSB). We find that the CSB terms in the modern NN interactions substantially reduce the discrepancy between theory and experiment for the Coulomb displacement energies; however, our calculations do not completely explain the Nolen-Schiffer anomaly. Potential sources for the remaining discrepancies are discussed.Comment: 10 pages RevTeX, no figure

    Hadronic gamma-Z box corrections in M\oller scattering

    Full text link
    The possibility of measuring the parity-violating asymmetry in M\oller scattering with sufficient accuracy to determine sin^2 theta_W to 0.1% offers a complementary path to the discovery of new physics to that followed at high energy colliders. We present a new calculation of the gamma-Z box contribution to parity-violating electron-proton scattering, which constitutes an important uncertainty in computing the background to this process. We show that while the gamma-Z correction grows rapidly with energy, it can be relatively well constrained by data from parity-violating inelastic scattering and parton distribution functions.Comment: 9 pages, 4 figures, to appear in Phys. Lett.

    Two-Boson Exchange Physics: A Brief Review

    Full text link
    Current status of the two-boson exchange contributions to elastic electron-proton scattering, both for parity conserving and parity-violating, is briefly reviewed. How the discrepancy in the extraction of elastic nucleon form factors between unpolarized Rosenbluth and polarization transfer experiments can be understood, in large part, by the two-photon exchange corrections is discussed. We also illustrate how the measurement of the ratio between positron-proton and electron-proton scattering can be used to differentiate different models of two-photon exchange. For the parity-violating electron-proton scattering, the interest is on how the two-boson exchange (TBE), \gamma Z-exchange in particular, could affect the extraction of the long-sought strangeness form factors. Various calculations all indicate that the magnitudes of effect of TBE on the extraction of strangeness form factors is small, though can be large percentage-wise in certain kinematics.Comment: 6 pages, 5 figures, prepared for Proceedings of the fifth Asia-Pacific Conference on Few-Body Problems in Physics (APFB2011), Seoul, Korea, August 22-26, 2011, to appear in Few-Body Systems, November 201

    Light-Front Bethe-Salpeter Equation

    Get PDF
    A three-dimensional reduction of the two-particle Bethe-Salpeter equation is proposed. The proposed reduction is in the framework of light-front dynamics. It yields auxiliary quantities for the transition matrix and the bound state. The arising effective interaction can be perturbatively expanded according to the number of particles exchanged at a given light-front time. An example suggests that the convergence of the expansion is rapid. This result is particular for light-front dynamics. The covariant results of the Bethe-Salpeter equation can be recovered from the corresponding auxiliary three-dimensional ones. The technical procedure is developed for a two-boson case; the idea for an extension to fermions is given. The technical procedure appears quite practicable, possibly allowing one to go beyond the ladder approximation for the solution of the Bethe-Salpeter equation. The relation between the three-dimensional light-front reduction of the field-theoretic Bethe-Salpeter equation and a corresponding quantum-mechanical description is discussed.Comment: 42 pages, 5 figure

    Low back pain risk factors in a large rural Australian Aboriginal community. An opportunity for managing co-morbidities?

    Get PDF
    BACKGROUND: Low back pain (LBP) is the most prevalent musculo-skeletal condition in rural and remote Australian Aboriginal communities. Smoking, physical inactivity and obesity are also prevalent amongst Indigenous people contributing to lifestyle diseases and concurrently to the high burden of low back pain. OBJECTIVES: This paper aims to examine the association between LBP and modifiable risk factors in a large rural Indigenous community as a basis for informing a musculo-skeletal and related health promotion program. METHODS: A community Advisory Group (CAG) comprising Elders, Aboriginal Health Workers, academics, nurses, a general practitioner and chiropractors assisted in the development of measures to assess self-reported musculo-skeletal conditions including LBP risk factors. The Kempsey survey included a community-based survey administered by Aboriginal Health Workers followed by a clinical assessment conducted by chiropractors. RESULTS: Age and gender characteristics of this Indigenous sample (n = 189) were comparable to those reported in previous Australian Bureau of Statistics (ABS) studies of the broader Indigenous population. A history of traumatic events was highly prevalent in the community, as were occupational risk factors. Thirty-four percent of participants reported a previous history of LBP. Sporting injuries were associated with multiple musculo-skeletal conditions, including LBP. Those reporting high levels of pain were often overweight or obese and obesity was associated with self-reported low back strain. Common barriers to medical management of LBP included an attitude of being able to cope with pain, poor health, and the lack of affordable and appropriate health care services. Though many of the modifiable risk factors known to be associated with LBP were highly prevalent in this study, none of these were statistically associated with LBP. CONCLUSION: Addressing particular modifiable risk factors associated with LBP such as smoking, physical inactivity and obesity may also present a wider opportunity to prevent and manage the high burden of illness imposed by co-morbidities such as heart disease and type-2 diabetes

    Quark-meson coupling model for finite nuclei

    Full text link
    A Quark-Meson Coupling (QMC) model is extended to finite nuclei in the relativistic mean-field or Hartree approximation. The ultra-relativistic quarks are assumed to be bound in non-overlapping nucleon bags, and the interaction between nucleons arises from a coupling of vector and scalar meson fields to the quarks. We develop a perturbative scheme for treating the spatial nonuniformity of the meson fields over the volume of the nucleon as well as the nucleus. Results of calculations for spherical nuclei are given, based on a fit to the equilibrium properties of nuclear matter. Several possible extensions of the model are also considered.Comment: 33 pages REVTeX plus 2 postscript figure

    Quantum solitons at strong coupling

    Get PDF
    We examine the effect of one loop quantum corrections on the formation of nontopological solitons in a strongly coupled scalar-fermionic Yukawa theory. The exact one fermion loop contribution is incorporated by using a nonlocal method to correct the local derivative expansion approximation (DE) of the effective action. As the Yukawa coupling is increased we find that the nonlocal corrections play an increasingly important role. The corrections cause the scalar field to increase in depth while maintaining its size. This increases the energy of the bag configuration, but this is compensated for by more tightly bound fermionic states with lower energy. In contrast to the semi-classical picture without quantum corrections, the binding energy is small, and the total energy scales directly with the Yukawa coupling. This confirms the qualitative behavior found in earlier work using the second order DE, although the quantitative solutions differ.Comment: 17 pages, 4 Postscript figures, REVTe

    Light-Front Nuclear Physics: Mean Field Theory for Finite Nuclei

    Get PDF
    A light-front treatment for finite nuclei is developed from a relativistic effective Lagrangian (QHD1) involving nucleons, scalar mesons and vector mesons. We show that the necessary variational principle is a constrained one which fixes the expectation value of the total momentum operator P+P^+ to be the same as that for PP^-. This is the same as minimizing the sum of the total momentum operators: P+P+P^-+P^+. We obtain a new light-front version of the equation that defines the single nucleon modes. The solutions of this equation are approximately a non-trivial phase factor times certain solutions of the usual equal-time Dirac equation. The ground state wave function is treated as a meson-nucleon Fock state, and the meson fields are treated as expectation values of field operators in that ground state. The resulting equations for these expectation values are shown to be closely related to the usual meson field equations. A new numerical technique to solve the self-consistent field equations is introduced and applied to 16^{16}O and 40^{40}Ca. The computed binding energies are essentially the same as for the usual equal-time theory. The nucleon plus momentum distribution (probability for a nucleon to have a given value of p+p^+) is obtained, and peaks for values of p+p^+ about seventy percent of the nucleon mass. The mesonic component of the ground state wave function is used to determine the scalar and vector meson momentum distribution functions, with a result that the vector mesons carry about thirty percent of the nuclear plus-momentum. The vector meson momentum distribution becomes more concentrated at p+=0p^+=0 as AA increases.Comment: 36 pages, 2 figure
    corecore