428 research outputs found

    The Rarita-Schwinger spin-3/2 equation in a nonuniform, central potential

    Get PDF
    The equations of motion for a massive spin-3/2 Rarita-Schwinger field in a finite-range, central, Lorentz scalar potential are developed. It is shown that the resulting density may not be everywhere positive definite.Comment: 9 pages, RevTe

    Light Front Nuclear Physics: Toy Models, Static Sources and Tilted Light Front Coordinates

    Full text link
    The principles behind the detailed results of a light-front mean field theory of finite nuclei are elucidated by deriving the nucleon mode equation using a simple general argument, based on the idea that a static source in equal time coordinates corresponds to a moving source in light front coordinates. This idea also allows us to solve several simple toy model examples: scalar field in a box, 1+1 dimensional bag model, three-dimensional harmonic oscillator and the Hulth\'en potential. The latter provide simplified versions of momentum distributions and form factors of relevance to experiments. In particular, the relativistic correction to the mean square radius of a nucleus is shown to be very small. Solving these simple examples suggests another more general approach-- the use of tilted light front coordinates. The simple examples are made even simpler.Comment: 19 pages, references adde

    Mechano-responsive polymer solutions based on CO2 supersaturation: shaking-induced phase transitions and self-assembly or dissociation of polymeric nanoparticles

    Get PDF
    Mechanical stimulation of supersaturated aqueous CO2 solutions is accompanied by a pH increase within seconds. In solutions of tailored homo- and AB diblock copolymers this is exploited to induce micelle formation, or, taking advantage of an aqueous upper critical solution temperature transition, nanoparticle disassembly

    Pyrite Oxidation Model for Assessing Ground-Water Management Strategies in Acid Sulfate Soils

    Full text link

    Nucleon Sigma Term and In-medium Quark Condensate in the Modified Quark-Meson Coupling Model

    Full text link
    We evaluate the nucleon sigma term and in-medium quark condensate in the modified quark-meson coupling model which features a density-dependent bag constant. We obtain a nucleon sigma term consistent with its empirical value, which requires a significant reduction of the bag constant in the nuclear medium similar to those found in the previous works. The resulting in-medium quark condensate at low densities agrees well with the model independent linear order result. At higher densities, the magnitude of the in-medium quark condensate tends to increase, indicating no tendency toward chiral symmetry restoration.Comment: 9 pages, modified version to be publishe

    gamma-Z corrections to forward-angle parity-violating e-p scattering

    Full text link
    We use dispersion relations to evaluate the gamma-Z box contribution to parity-violating electron scattering in the forward limit arising from the axial-vector coupling at the electron vertex. The calculation makes full use of the critical constraints from recent JLab data on electroproduction in the resonance region as well as high energy data from HERA. At the kinematics of the Qweak experiment, this gives a correction of 0.0047{+0.0011}{-0.0004}$ to the Standard Model value 0.0713(8) of the proton weak charge. While the magnitude of the correction is highly significant, the uncertainty is within the anticipated experimental uncertainty of +- 0.003.Comment: 5 pages, 4 figures, expanded version to appear in Phys. Rev.

    Light-Front Nuclear Physics: Mean Field Theory for Finite Nuclei

    Get PDF
    A light-front treatment for finite nuclei is developed from a relativistic effective Lagrangian (QHD1) involving nucleons, scalar mesons and vector mesons. We show that the necessary variational principle is a constrained one which fixes the expectation value of the total momentum operator P+P^+ to be the same as that for P−P^-. This is the same as minimizing the sum of the total momentum operators: P−+P+P^-+P^+. We obtain a new light-front version of the equation that defines the single nucleon modes. The solutions of this equation are approximately a non-trivial phase factor times certain solutions of the usual equal-time Dirac equation. The ground state wave function is treated as a meson-nucleon Fock state, and the meson fields are treated as expectation values of field operators in that ground state. The resulting equations for these expectation values are shown to be closely related to the usual meson field equations. A new numerical technique to solve the self-consistent field equations is introduced and applied to 16^{16}O and 40^{40}Ca. The computed binding energies are essentially the same as for the usual equal-time theory. The nucleon plus momentum distribution (probability for a nucleon to have a given value of p+p^+) is obtained, and peaks for values of p+p^+ about seventy percent of the nucleon mass. The mesonic component of the ground state wave function is used to determine the scalar and vector meson momentum distribution functions, with a result that the vector mesons carry about thirty percent of the nuclear plus-momentum. The vector meson momentum distribution becomes more concentrated at p+=0p^+=0 as AA increases.Comment: 36 pages, 2 figure

    The Rarita-Schwinger Particles Under de Influence of Strong Magnetic Fields

    Full text link
    In this work, we calculate the solutions of the Rarita-Schwinger equation with the inclusion of the eletromagnetic interaction. Our gauge and coupling prescription choices lead to Dirac-type solutions. One of the consequences of our results are the Landau level occupation of particles, quite different from the usual spin 1/2 particle system occupation numbers.Comment: 12 page

    Quark Coulomb Interactions and the Mass Difference of Mirror Nuclei

    Get PDF
    We study the Okamoto-Nolen-Schiffer (ONS) anomaly in the binding energy of mirror nuclei at high density by adding a single neutron or proton to a quark gluon plasma. In this high-density limit we find an anomaly equal to two-thirds of the Coulomb exchange energy of a proton. This effect is dominated by quark electromagnetic interactions---rather than by the up-down quark mass difference. At normal density we calculate the Coulomb energy of neutron matter using a string-flip quark model. We find a nonzero Coulomb energy because of the neutron's charged constituents. This effect could make a significant contribution to the ONS anomaly.Comment: 4 pages, 2 figs. sub. to Phys. Rev. Let
    • 

    corecore