34 research outputs found

    Suppression of the Nrf2-Dependent Antioxidant Response by Glucocorticoids and 11β-HSD1-Mediated Glucocorticoid Activation in Hepatic Cells

    Get PDF
    Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key transcription factor regulating a plethora of detoxifying enzymes and antioxidant genes involved in drug metabolism and defence against oxidative stress. The glucocorticoid receptor (GR) is a ligand-induced transcription factor involved in the regulation of energy supply for metabolic needs to cope with various stressors. GR activity is controlled by glucocorticoids, which are synthesized in the adrenal glands and regenerated mainly in the liver from inactive cortisone by 11β-hydroxysteroid dehydrogenase-1 (11β-HSD1).; Using transfected HEK-293 cells and hepatic H4IIE cells we show that glucocorticoids, activated by 11β-HSD1 and acting through GR, suppress the Nrf2-dependent antioxidant response. The expression of the marker genes NQO1, HMOX1 and GST2A was suppressed upon treatment of 11β-HSD1 expressing cells with cortisone, an effect that was reversed by 11β-HSD1 inhibitors. Furthermore, our results demonstrate that elevated glucocorticoids lowered the ability of cells to detoxify H(2)O(2). Moreover, a comparison of gene expression in male and female rats revealed an opposite sexual dimorphism with an inverse relationship between 11β-HSD1 and Nrf2 target gene expression.; The results demonstrate a suppression of the cellular antioxidant defence capacity by glucocorticoids and suggest that elevated 11β-HSD1 activity may lead to impaired Nrf2-dependent antioxidant response. The gender-specific differences in hepatic expression levels of 11β-HSD1 and Nrf2 target genes and the impact of pharmacological inhibition of 11β-HSD1 on improving cellular capacity to cope with oxidative stress warrants further studies in vivo

    Charting Evolution’s Trajectory: Using Molluscan Eye Diversity to Understand Parallel and Convergent Evolution

    Get PDF
    For over 100 years, molluscan eyes have been used as an example of convergent evolution and, more recently, as a textbook example of stepwise evolution of a complex lens eye via natural selection. Yet, little is known about the underlying mechanisms that create the eye and generate different morphologies. Assessing molluscan eye diversity and understanding how this diversity came about will be important to developing meaningful interpretations of evolutionary processes. This paper provides an introduction to the myriad of eye types found in molluscs, focusing on some of the more unusual structures. We discuss how molluscan eyes can be applied to the study of evolution by examining patterns of convergent and parallel evolution and provide several examples, including the putative convergence of the camera-type eyes of cephalopods and vertebrates

    Toward Developing Models to Study the Disease, Ecology, and Evolution of the Eye in Mollusca*

    Full text link

    Layout und Design eines Fahrzeugwindkanals

    No full text

    ENSEMBLE

    No full text

    Blue Gene/L advanced diagnostics environment

    No full text
    This paper describes the Blue Genet/L advanced diagnostics environment (ADE) used throughout all aspects of the Blue Gene/L project, including design, logic verification, bringup, diagnostics, and manufacturing test. The Blue Gene/L ADE consists of a lightweight multithreaded coherence-managed kernel, runtime libraries, device drivers, system programming interfaces, compilers, and host-based development tools. It provides complete and flexible access to all features of the Blue Gene/L hardware. Prior to the existence of hardware, ADE was used on Very highspeed integrated circuit Hardware Description Language (VHDL) models, not only for logic verification, but also for performance measurements, code-path analysis, and evaluation of architectural tradeo#s. During early hardware bring-up, the ability to run in a cycle-reproducible manner on both hardware and VHDL proved invaluable in fault isolation and analysis. However, ADE is also capable of supporting high-performance applications and parallel test cases, thereby permitting us to stress the hardware to the limits of its capabilities. This paper also provides insights into systemlevel and device-level programming of Blue Gene/L to assist developers of high-performance applications to more fully exploit the performance of the machine
    corecore