697 research outputs found

    A generalized spherical version of the Blume-Emery-Griffits model with ferromagnetic and antiferromagnetic interactions

    Full text link
    We have investigated analitycally the phase diagram of a generalized spherical version of the Blume-Emery-Griffiths model that includes ferromagnetic or antiferromagnetic spin interactions as well as quadrupole interactions in zero and nonzero magnetic field. We show that in three dimensions and zero magnetic field a regular paramagnetic-ferromagnetic (PM-FM) or a paramagnetic-antiferromagnetic (PM-AFM) phase transition occurs whenever the magnetic spin interactions dominate over the quadrupole interactions. However, when spin and quadrupole interactions are important, there appears a reentrant FM-PM or AFM-PM phase transition at low temperatures, in addition to the regular PM-FM or PM-AFM phase transitions. On the other hand, in a nonzero homogeneous external magnetic field HH, we find no evidence of a transition to the state with spontaneous magnetization for FM interactions in three dimensions. Nonethelesss, for AFM interactions we do get a scenario similar to that described above for zero external magnetic field, except that the critical temperatures are now functions of HH. We also find two critical field values, Hc1H_{c1}, at which the reentrance phenomenon dissapears and Hc2H_{c2} (Hc1≈0.5Hc2H_{c1}\approx 0.5H_{c2}), above which the PM-AFM transition temperature vanishes.Comment: 21 pages, 6 figs. Title changed, abstract and introduction as well as section IV were rewritten relaxing the emphasis on spin S=1 and Figs. 5 an 6 were improved in presentation. However, all the results remain valid. Accepted for publication in Phys. Rev.

    Satellite holmium M-edge spectra from the magnetic phase via resonant x-ray scattering

    Full text link
    Developing an expression of resonant x-ray scattering (RXS) amplitude which is convenient for investigating the contributions from the higher rank tensor on the basis of a localized electron picture, we analyze the RXS spectra from the magnetic phases of Ho near the M4,5M_{4,5} absorption edges. At the M5M_5 edge in the uniform helical phase, the calculated spectra of the absorption coefficient, the RXS intensities at the first and second satellite spots capture the properties the experimental data possess, such as the spectral shapes and the peak positions. This demonstrates the plausibility of the adoption of the localized picture in this material and the effectiveness of the spectral shape analysis. The latter point is markedly valuable since the azimuthal angle dependence, which is one of the most useful informations RXS can provides, is lacking in the experimental conditions. Then, by focusing on the temperature dependence of the spectral shape at the second satellite spot, we expect that the spectrum is the contribution of the pure rank two profile in the uniform helical and the conical phases while that is dominated by the rank one profile in the intermediate temperature phase, so-called spin slip phase. The change of the spectral shape as a function of temperature indicates a direct evidence of the change of magnetic structures undergoing. Furthermore, we predict that the intensity, which is the same order observed at the second satellite spot, is expected at the fourth satellite spot from the conical phase in the electric dipolar transition.Comment: 24 pages, 5 figure

    Coherent combining of high brightness tapered amplifiers for efficient non-linear conversion

    Get PDF
    International audienceWe report on coherent beam combining of three high brightness tapered amplifiers seeded by a single-frequency laser at λ = 976 nm in a simple architecture with efficiently-cooled emitters. The maximal combined power of 12.9 W is achieved at a combining efficiency of > 65 % limited by the intrinsic beam quality of the amplifiers. The coherent combining cleans up the spatial profile, as the power content in the central lobe increases up to 86 %. This high-brightness infrared beam is converted into the visible by second harmonic generation, and results in a high non-linear conversion efficiency of 4.5 %/W and a maximum power over 2 W at 488 nm, limited by thermal effects in the PPLN

    Structure of boson systems beyond the mean-field

    Full text link
    We investigate systems of identical bosons with the focus on two-body correlations. We use the hyperspherical adiabatic method and a decomposition of the wave function in two-body amplitudes. An analytic parametrization is used for the adiabatic effective radial potential. We discuss the structure of a condensate for arbitrary scattering length. Stability and time scales for various decay processes are estimated. The previously predicted Efimov-like states are found to be very narrow. We discuss the validity conditions and formal connections between the zero- and finite-range mean-field approximations, Faddeev-Yakubovskii formulation, Jastrow ansatz, and the present method. We compare numerical results from present work with mean-field calculations and discuss qualitatively the connection with measurements.Comment: 26 pages, 6 figures, submitted to J. Phys. B. Ver. 2 is 28 pages with modified figures and discussion

    c-Kit-Mediated Functional Positioning of Stem Cells to Their Niches Is Essential for Maintenance and Regeneration of Adult Hematopoiesis

    Get PDF
    The mechanism by which hematopoietic stem and progenitor cells (HSPCs) through interaction with their niches maintain and reconstitute adult hematopoietic cells is unknown. To functionally and genetically track localization of HSPCs with their niches, we employed novel mutant loxPs, lox66 and lox71 and Cre-recombinase technology to conditionally delete c-Kit in adult mice, while simultaneously enabling GFP expression in the c-Kit-deficient cells. Conditional deletion of c-Kit resulted in hematopoietic failure and splenic atrophy both at steady state and after marrow ablation leading to the demise of the treated adult mice. Within the marrow, the c-Kit-expressing GFP+ cells were positioned to Kit ligand (KL)-expressing niche cells. This c-Kit-mediated cellular adhesion was essential for long-term maintenance and expansion of HSPCs. These results lay the foundation for delivering KL within specific niches to maintain and restore hematopoiesis

    Two-body correlations in N-body boson systems

    Full text link
    We formulate a method to study two-body correlations in a system of N identical bosons interacting via central two-body potentials. We use the adiabatic hyperspherical approach and assume a Faddeev-like decomposition of the wave function. For a fixed hyperradius we derive variationally an optimal integro-differential equation for hyperangular eigenvalue and wave function. This equation reduces substantially by assuming the interaction range much smaller than the size of the N-body system. At most one-dimensional integrals then remain. We view a Bose-Einstein condensate pictorially as a structure in the landscape of the potential given as a function of the one-dimensional hyperradial coordinate. The quantum states of the condensate can be located in one of the two potential minima. We derive and discuss properties of the solutions and illustrate with numerical results. The correlations lower the interaction energy substantially. The new multi-body Efimov states are solutions independent of details of the two-body potential. We compare with mean-field results and available experimental data.Comment: 19 pages (RevTeX4), 13 figures (latex). Journal-link: http://pra.aps.org

    Identification of Direct Target Engagement Biomarkers for Kinase-Targeted Therapeutics

    Get PDF
    Pharmacodynamic (PD) biomarkers are an increasingly valuable tool for decision-making and prioritization of lead compounds during preclinical and clinical studies as they link drug-target inhibition in cells with biological activity. They are of particular importance for novel, first-in-class mechanisms, where the ability of a targeted therapeutic to impact disease outcome is often unknown. By definition, proximal PD biomarkers aim to measure the interaction of a drug with its biological target. For kinase drug discovery, protein substrate phosphorylation sites represent candidate PD biomarkers. However, substrate phosphorylation is often controlled by input from multiple converging pathways complicating assessment of how potently a small molecule drug hits its target based on substrate phoshorylation measurements alone. Here, we report the use of quantitative, differential mass-spectrometry to identify and monitor novel drug-regulated phosphorylation sites on target kinases. Autophosphorylation sites constitute clinically validated biomarkers for select protein tyrosine kinase inhibitors. The present study extends this principle to phosphorylation sites in serine/threonine kinases looking beyond the T-loop autophosphorylation site. Specifically, for the 3′-phosphoinositide-dependent protein kinase 1 (PDK1), two phospho-residues p-PDK1Ser410 and p-PDK1Thr513 are modulated by small-molecule PDK1 inhibitors, and their degree of dephosphorylation correlates with inhibitor potency. We note that classical, ATP-competitive PDK1 inhibitors do not modulate PDK1 T-loop phosphorylation (p-PDK1Ser241), highlighting the value of an unbiased approach to identify drug target-regulated phosphorylation sites as these are complementary to pathway PD biomarkers. Finally, we extend our analysis to another protein Ser/Thr kinase, highlighting a broader utility of our approach for identification of kinase drug-target engagement biomarkers
    • …
    corecore