6,019 research outputs found
Dipolar Bose gases: Many-body versus mean-field description
We characterize zero-temperature dipolar Bose gases under external spherical
confinement as a function of the dipole strength using the essentially exact
many-body diffusion Monte Carlo (DMC) technique. We show that the DMC energies
are reproduced accurately within a mean-field framework if the variation of the
s-wave scattering length with the dipole strength is accounted for properly.
Our calculations suggest stability diagrams and collapse mechanisms of dipolar
Bose gases that differ significantly from those previously proposed in the
literature
Quasi-one-dimensional Bose gases with large scattering length
Bose gases confined in highly-elongated harmonic traps are investigated over
a wide range of interaction strengths using quantum Monte Carlo techniques. We
find that the properties of a Bose gas under tight transverse confinement are
well reproduced by a 1d model Hamiltonian with contact interactions. We point
out the existence of a unitary regime, where the properties of the quasi-1d
Bose gas become independent of the actual value of the 3d scattering length. In
this unitary regime, the energy of the system is well described by a hard rod
equation of state. We investigate the stability of quasi-1d Bose gases with
positive and negative 3d scattering length.Comment: 5 pages, 3 figure
Non-divergent pseudo-potential treatment of spin-polarized fermions under 1D and 3D harmonic confinement
Atom-atom scattering of bosonic one-dimensional (1D) atoms has been modeled
successfully using a zero-range delta-function potential, while that of bosonic
3D atoms has been modeled successfully using Fermi-Huang's regularized s-wave
pseudo-potential. Here, we derive the eigenenergies of two spin-polarized 1D
fermions under external harmonic confinement interacting through a zero-range
potential, which only acts on odd-parity wave functions, analytically. We also
present a divergent-free zero-range potential treatment of two spin-polarized
3D fermions under harmonic confinement. Our pseudo-potential treatments are
verified through numerical calculations for short-range model potentials.Comment: 9 pages, 4 figures (subm. to PRA on 03/15/2004
Quantum Monte Carlo study of quasi-one-dimensional Bose gases
We study the behavior of quasi-one-dimensional (quasi-1d) Bose gases by Monte
Carlo techniques, i.e., by the variational Monte Carlo, the diffusion Monte
Carlo, and the fixed-node diffusion Monte Carlo technique. Our calculations
confirm and extend our results of an earlier study [Astrakharchik et al.,
cond-mat/0308585]. We find that a quasi-1d Bose gas i) is well described by a
1d model Hamiltonian with contact interactions and renormalized coupling
constant; ii) reaches the Tonks-Girardeau regime for a critical value of the 3d
scattering length a_3d; iii) enters a unitary regime for |a_3d| -> infinity,
where the properties of the gas are independent of a_3d and are similar to
those of a 1d gas of hard-rods; and iv) becomes unstable against cluster
formation for a critical value of the 1d gas parameter. The accuracy and
implications of our results are discussed in detail.Comment: 15 pages, 9 figure
Three particles in an external trap: Nature of the complete J=0 spectrum
Three bosonic, spin-polarized atoms in a spherical oscillator potential
constitutes the simplest nontrivial Bose-Einstein condensate (BEC). The present
paper develops the tools needed to understand the nature of the complete J=0
energy spectrum for this prototype system, assuming a sum of two-body
potentials. The resulting spectrum is calculated as a function of the two-body
scattering length a_sc, which documents the evolution of certain many-body
levels that evolve from BEC-type to molecular-type as the scattering length is
decreased. Implications for the behavior of the condensate excited-state
spectrum and for condensate formation and decay are elucidated. The energy
levels evolve smoothly, even through the regime where the number of two-body
bound states N_b increases by 1, and a_{sc} switches from -infinity to
infinity. We point out the possibility of suppressing three-body recombination
by tuning the two-body scattering length to values that are larger than the
size of the condensate ground state. Comparisons with mean-field treatments are
presented
Cluster formation near midrapidity -- can the mechanism be identified experimentally?
The formation of weakly bound clusters in the hot and dense environment at
midrapidity is one of the surprising phenomena observed experimentally in
heavy-ion collisions from a low center of mass energy of =2.5 GeV up
to a ultra-relativistic energy of =5 TeV. Three approaches have been
advanced to describe the cluster formation: coalescence at kinetic freeze-out,
cluster formation during the entire heavy-ion collision by potential
interaction between nucleons and deuteron production by hadronic reactions. We
identify experimental observables, which can discriminate these production
mechanisms for deuterons.Comment: typos correcte
Scalable Noise Estimation with Random Unitary Operators
We describe a scalable stochastic method for the experimental measurement of
generalized fidelities characterizing the accuracy of the implementation of a
coherent quantum transformation. The method is based on the motion reversal of
random unitary operators. In the simplest case our method enables direct
estimation of the average gate fidelity. The more general fidelities are
characterized by a universal exponential rate of fidelity loss. In all cases
the measurable fidelity decrease is directly related to the strength of the
noise affecting the implementation -- quantified by the trace of the
superoperator describing the non--unitary dynamics. While the scalability of
our stochastic protocol makes it most relevant in large Hilbert spaces (when
quantum process tomography is infeasible), our method should be immediately
useful for evaluating the degree of control that is achievable in any prototype
quantum processing device. By varying over different experimental arrangements
and error-correction strategies additional information about the noise can be
determined.Comment: 8 pages; v2: published version (typos corrected; reference added
- …