2,939 research outputs found

    Resonant Two-Magnon Raman Scattering and Photoexcited States in Two-Dimensional Mott Insulators

    Full text link
    We investigate the resonant two-magnon Raman scattering in two-dimensional (2D) Mott insulators by using a half-filled 2D Hubbard model in the strong coupling limit. By performing numerical diagonalization calculations for small clusters, we find that the Raman intensity is enhanced when the incoming photon energy is not near the optical absorption edge but well above it, being consistent with experimental data. The absence of resonance near the gap edge is associated with the presence of background spins, while photoexcited states for resonance are found to be characterized by the charge degree of freedom. The resonance mechanism is different from those proposed previously.Comment: REVTeX4, 4 pages, 3 figures, to be published in Phys. Rev. Let

    Geometry of fully coordinated, two-dimensional percolation

    Full text link
    We study the geometry of the critical clusters in fully coordinated percolation on the square lattice. By Monte Carlo simulations (static exponents) and normal mode analysis (dynamic exponents), we find that this problem is in the same universality class with ordinary percolation statically but not so dynamically. We show that there are large differences in the number and distribution of the interior sites between the two problems which may account for the different dynamic nature.Comment: ReVTeX, 5 pages, 6 figure

    Sliding Density-Wave in Sr_{14}Cu_{24}O_{41} Ladder Compounds

    Full text link
    We used transport and Raman scattering measurements to identify the insulating state of self-doped spin 1/2 two-leg ladders of Sr_{14}Cu_{24}O_{41} as a weakly pinned, sliding density wave with non-linear conductivity and a giant dielectric response that persists to remarkably high temperatures

    Pressure-induced phase transition and bi-polaronic sliding in a hole-doped Cu_2O_3 ladder system

    Full text link
    We study a hole-doped two-leg ladder system including metal ions, oxygen, and electron-lattice interaction, as a model for Sr_{14-x}Ca_xCu_{24}O_{41-\delta}. Single- and bi-polaronic states at 1/4-hole doping are modeled as functions of pressure by applying an unrestricted Hartree-Fock approximation to a multiband Peierls-Hubbard Hamiltonian. We find evidence for a pressure-induced phase transition between single-polaron and bi-polaron states. The electronic and phononic excitations in those states, including distinctive local lattice vibrational modes, are calculated by means of a direct-space Random Phase approximation. Finally, as a function of pressure, we identify a transition between site- and bond-centered bi-polarons, accompanied by a soft mode and a low-energy charge-sliding mode. We suggest comparisons with available experimented data

    Electronic and Vibrational Excitations on the Surface of the Three-Dimensional Topological Insulator Bi2_2Te3−x_{3-x}Sex_{x} (x = 0, 2, 3)

    Full text link
    We study surface states in the three-dimensional topological insulators Bi2_2Te3−x_{3-x}Sex_{x} (x = 0, 2, 3) by polarization resolved resonant Raman spectroscopy. By tracking the spectral intensity of the surface phonon modes with respect to the incident photon energy, we show that the surface phonons are qualitatively similar to their bulk counterparts. Using the resonant Raman excitation profile, we estimated the binding energy of the surface conduction bands relative to bulk conduction bands. In addition, by analyzing the Fano interaction between the electronic continuum and the surface phonons as a function of incident photon energy, we determined the spectral properties of the electronic continuum excitations between surface and bulk states in Bi2_2Se3_3
    • …
    corecore