2,259 research outputs found

    Pressure-induced phase transition and bi-polaronic sliding in a hole-doped Cu_2O_3 ladder system

    Full text link
    We study a hole-doped two-leg ladder system including metal ions, oxygen, and electron-lattice interaction, as a model for Sr_{14-x}Ca_xCu_{24}O_{41-\delta}. Single- and bi-polaronic states at 1/4-hole doping are modeled as functions of pressure by applying an unrestricted Hartree-Fock approximation to a multiband Peierls-Hubbard Hamiltonian. We find evidence for a pressure-induced phase transition between single-polaron and bi-polaron states. The electronic and phononic excitations in those states, including distinctive local lattice vibrational modes, are calculated by means of a direct-space Random Phase approximation. Finally, as a function of pressure, we identify a transition between site- and bond-centered bi-polarons, accompanied by a soft mode and a low-energy charge-sliding mode. We suggest comparisons with available experimented data

    Observations and interpretation of x-ray absorption edges in iron compounds and proteins

    Full text link

    Resonant Raman Scattering in Antiferromagnets

    Full text link
    Two-magnon Raman scattering provides important information about electronic correlations in the insulating parent compounds of high-TcT_c materials. Recent experiments have shown a strong dependence of the Raman signal in B1gB_{1g} geometry on the frequency of the incoming photon. We present an analytical and numerical study of the Raman intensity in the resonant regime. It has been previously argued by one of us (A.Ch) and D. Frenkel that the most relevant contribution to the Raman vertex at resonance is given by the triple resonance diagram. We derive an expression for the Raman intensity in which we simultaneously include the enhancement due to the triple resonance and a final state interaction. We compute the two-magnon peak height (TMPH) as a function of incident frequency and find two maxima at ωres(1)2Δ+3J\omega^{(1)}_{res} \approx 2\Delta + 3J and ωres(2)2Δ+8J\omega^{(2)}_{res} \approx 2\Delta + 8J. We argue that the high-frequency maximum is cut only by a quasiparticle damping, while the low-frequency maximum has a finite amplitude even in the absence of damping. We also obtain an evolution of the Raman profile from an asymmetric form around ωres(1)\omega^{(1)}_{res} to a symmetric form around ωres(2)\omega^{(2)}_{res}. We further show that the TMPH depends on the fermionic quasiparticle damping, the next-nearest neighbor hopping term tt^{\prime} and the corrections to the interaction vertex between light and the fermionic current. We discuss our results in the context of recent experiments by Blumberg et al. on Sr2CuO2Cl2Sr_2CuO_2Cl_2 and YBa2Cu3O6.1YBa_2Cu_3O_{6.1} and R\"{u}bhausen et al. on PrBa2Cu3O7PrBa_2Cu_3O_7 and show that the triple resonance theory yields a qualitative and to some extent also quantitative understanding of the experimental data.Comment: 19 pages, RevTeX, 16 figures embedded in the text, ps-file is also available at http://lifshitz.physics.wisc.edu/www/morr/morr_homepage.htm

    Weak ferromagnetic spin and charge stripe order in La[sub 5/3]Sr[sub 1/3]NiO[sub 4]

    Full text link
    We present magnetization and specific heat data of a La5/3Sr1/3NiO4 single crystal in high magnetic fields. From the charge and spin stripe ordering temperatures, as well as a magnetic low temperature transition, we have constructed the electronic phase diagram for fields up to 14 Tesla. While the charge stripe ordering temperature TCO is independent of the magnetic field, there is a significant shift of the spin stripe ordering temperature TSO of about 1.5 K/ Tesla, if the magnetic fields are applied parallel to the NiO2-planes. The specific heat measurements indicate a large anomalous entropy change at TCO. In contrast, no significant entropy change is observed at the spin stripe transition. The high field magnetization experiments reveal the presence of in-plane weak ferromagnetic moments in the charge stripe ordered phase. From a phenomenological analysis, the magnetic correlation length of these moments is determined. We suggest that the weak ferromagnetism is due either to the presence of bond-centered charge stripes or to double exchange interactions across site-centered charge stripes.Comment: In v2, spelling of author names has been change

    Influence of oxygen ordering kinetics on Raman and optical response in YBa_2Cu_3O_{6.4}

    Full text link
    Kinetics of the optical and Raman response in YBa_2Cu_3O_{6.4} were studied during room temperature annealing following heat treatment. The superconducting T_c, dc resistivity, and low-energy optical conductivity recover slowly, implying a long relaxation time for the carrier density. Short relaxation times are observed for the B_{1g} Raman scattering -- magnetic, continuum, and phonon -- and the charge transfer band. Monte Carlo simulations suggest that these two relaxation rates are related to two length scales corresponding to local oxygen ordering (fast) and long chain and twin formation (slow).Comment: REVTeX, 3 pages + 4 PostScript (compressed) figure
    corecore