11,280 research outputs found
The footprint of cometary dust analogues: II. Morphology as a tracer of tensile strength and application to dust collection by the Rosetta spacecraft
The structure of cometary dust is a tracer of growth processes in the
formation of planetesimals. Instrumentation on board the Rosetta mission to
comet 67P/Churyumov- Gerasimenko captured dust particles and analysed them in
situ. However, these deposits are a product of a collision within the
instrument. We conducted laboratory experiments with cometary dust analogues,
simulating the collection process by Rosetta instruments (specifically COSIMA,
MIDAS). In Paper I we reported that velocity is a key driver in determining the
appearance of deposits. Here in Paper II we use materials with different
monomer sizes, and study the effect of tensile strength on the appearance of
deposits. We find that mass transfer efficiency increases from 1 up to
10% with increasing monomer diameter from 0.3 m to 1.5 m (i.e.
tensile strength decreasing from 12 to 3 kPa), and velocities
increasing from 0.5 to 6 m/s. Also, the relative abundance of small fragments
after impact is higher for material with higher tensile strength. The
degeneracy between the effects of velocity and material strength may be lifted
by performing a closer study of the deposits. This experimental method makes it
possible to estimate the mass transfer efficiency in the COSIMA instrument.
Extrapolating these results implies that more than half of the dust collected
during the Rosetta mission has not been imaged. We analysed two COSIMA targets
containing deposits from single collisions. The collision that occurred closest
to perihelion passage led to more small fragments on the target.Comment: 13 pages, 11 figures, accepted for publication in MNRA
Non-Markovian Dynamics of Charge Carriers in Quantum Dots
We have investigated the dynamics of bound particles in multilevel
current-carrying quantum dots. We look specifically in the regime of resonant
tunnelling transport, where several channels are available for transport.
Through a non-Markovian formalism under the Born approximation, we investigate
the real-time evolution of the confined particles including transport-induced
decoherence and relaxation. In the case of a coherent superposition between
states with different particle number, we find that a Fock-space coherence may
be preserved even in the presence of tunneling into and out of the dot.
Real-time results are presented for various asymmetries of tunneling rates into
different orbitals.Comment: 9 pages, 3 figures, International Workshop on Physics-Based
Mathematical Models for Low-Dimensional Semiconductor Nanostructures. BIRS,
November 18-23, 200
Improvement and Taste Symmetry Breaking for Staggered Quarks
We compare several improved actions for staggered quarks. We study the effect
of improvement on the taste changing interactions by calculating the splitting
in the pion spectrum. We investigate the effect of the improvement on some
topological properties.Comment: 3 pages, 3 figures, Lattice 2003 proceeding
Matching Dynamics with Constraints
We study uncoordinated matching markets with additional local constraints
that capture, e.g., restricted information, visibility, or externalities in
markets. Each agent is a node in a fixed matching network and strives to be
matched to another agent. Each agent has a complete preference list over all
other agents it can be matched with. However, depending on the constraints and
the current state of the game, not all possible partners are available for
matching at all times. For correlated preferences, we propose and study a
general class of hedonic coalition formation games that we call coalition
formation games with constraints. This class includes and extends many recently
studied variants of stable matching, such as locally stable matching, socially
stable matching, or friendship matching. Perhaps surprisingly, we show that all
these variants are encompassed in a class of "consistent" instances that always
allow a polynomial improvement sequence to a stable state. In addition, we show
that for consistent instances there always exists a polynomial sequence to
every reachable state. Our characterization is tight in the sense that we
provide exponential lower bounds when each of the requirements for consistency
is violated. We also analyze matching with uncorrelated preferences, where we
obtain a larger variety of results. While socially stable matching always
allows a polynomial sequence to a stable state, for other classes different
additional assumptions are sufficient to guarantee the same results. For the
problem of reaching a given stable state, we show NP-hardness in almost all
considered classes of matching games.Comment: Conference Version in WINE 201
Neurogenetic interactions and aberrant behavioral co-morbidity of attention deficit hyperactivity disorder (ADHD): dispelling myths
BACKGROUND: Attention Deficit Hyperactivity Disorder, commonly referred to as ADHD, is a common, complex, predominately genetic but highly treatable disorder, which in its more severe form has such a profound effect on brain function that every aspect of the life of an affected individual may be permanently compromised. Despite the broad base of scientific investigation over the past 50 years supporting this statement, there are still many misconceptions about ADHD. These include believing the disorder does not exist, that all children have symptoms of ADHD, that if it does exist it is grossly over-diagnosed and over-treated, and that the treatment is dangerous and leads to a propensity to drug addiction. Since most misconceptions contain elements of truth, where does the reality lie? RESULTS: We have reviewed the literature to evaluate some of the claims and counter-claims. The evidence suggests that ADHD is primarily a polygenic disorder involving at least 50 genes, including those encoding enzymes of neurotransmitter metabolism, neurotransmitter transporters and receptors. Because of its polygenic nature, ADHD is often accompanied by other behavioral abnormalities. It is present in adults as well as children, but in itself it does not necessarily impair function in adult life; associated disorders, however, may do so. A range of treatment options is reviewed and the mechanisms responsible for the efficacy of standard drug treatments are considered. CONCLUSION: The genes so far implicated in ADHD account for only part of the total picture. Identification of the remaining genes and characterization of their interactions is likely to establish ADHD firmly as a biological disorder and to lead to better methods of diagnosis and treatment
The footprint of cometary dust analogs: I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data
Cometary dust provides a unique window on dust growth mechanisms during the
onset of planet formation. Measurements by the Rosetta spacecraft show that the
dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at
size scales from sub-um up to several hundreds of um, indicating hierarchical
growth took place across these size scales. However, these dust particles may
have been modified during their collection by the spacecraft instruments. Here
we present the results of laboratory experiments that simulate the impact of
dust on the collection surfaces of COSIMA and MIDAS, instruments onboard the
Rosetta spacecraft. We map the size and structure of the footprints left by the
dust particles as a function of their initial size (up to several hundred um)
and velocity (up to 6 m/s). We find that in most collisions, only part of the
dust particle is left on the target; velocity is the main driver of the
appearance of these deposits. A boundary between sticking/bouncing and
fragmentation as an outcome of the particle-target collision is found at v ~ 2
m/s. For velocities below this value, particles either stick and leave a single
deposit on the target plate, or bounce, leaving a shallow footprint of
monomers. At velocities > 2 m/s and sizes > 80 um, particles fragment upon
collision, transferring up to 50 per cent of their mass in a rubble-pile-like
deposit on the target plate. The amount of mass transferred increases with the
impact velocity. The morphologies of the deposits are qualitatively similar to
those found by the COSIMA instrument.Comment: 14 pages, 12 figures, accepted for publication in MNRA
Investigation of the Critical Behavior of the Critical Point of the Z2 Gauge Lattice
We investigate, through Monte-Carlo simulations, the nature of the second
order point in a (Bosonic) + gauge theory in four dimensions.
Detailed analysis of the critical exponents point to the Ising universality
class. Relevancy to extended models and possible Non-Gaussian behavior is
discussed.Comment: 4 pages, 6 figures, LaTe
Experimental Quantum Coin Tossing
In this letter we present the first implementation of a quantum coin tossing
protocol. This protocol belongs to a class of ``two-party'' cryptographic
problems, where the communication partners distrust each other. As with a
number of such two-party protocols, the best implementation of the quantum coin
tossing requires qutrits. In this way, we have also performed the first
complete quantum communication protocol with qutrits. In our experiment the two
partners succeeded to remotely toss a row of coins using photons entangled in
the orbital angular momentum. We also show the experimental bounds of a
possible cheater and the ways of detecting him
Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale
We study the NMSSM with universal Susy breaking terms (besides the Higgs
sector) at the GUT scale. Within this constrained parameter space, it is not
difficult to find a Higgs boson with a mass of about 125 GeV and an enhanced
cross section in the diphoton channel. An additional lighter Higgs boson with
reduced couplings and a mass <123 GeV is potentially observable at the LHC. The
NMSSM-specific Yukawa couplings lambda and kappa are relatively large and
tan(beta) is small, such that lambda, kappa and the top Yukawa coupling are of
order 1 at the GUT scale. The lightest stop can be as light as 105 GeV, and the
fine-tuning is modest. WMAP constraints can be satisfied by a dominantly
higgsino-like LSP with substantial bino, wino and singlino admixtures and a
mass of ~60-90 GeV, which would potentially be detectable by XENON100.Comment: 20 pages, 14 figure
- …